Medical Image Segmentation with Belief Function Theory and Deep Learning
- URL: http://arxiv.org/abs/2309.05914v1
- Date: Tue, 12 Sep 2023 02:04:36 GMT
- Title: Medical Image Segmentation with Belief Function Theory and Deep Learning
- Authors: Ling Huang
- Abstract summary: We study medical image segmentation approaches with belief function theory and deep learning.
In this thesis, we focus on information modeling and fusion based on uncertain evidence.
- Score: 10.70969021941027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has shown promising contributions in medical image segmentation
with powerful learning and feature representation abilities. However, it has
limitations for reasoning with and combining imperfect (imprecise, uncertain,
and partial) information. In this thesis, we study medical image segmentation
approaches with belief function theory and deep learning, specifically focusing
on information modeling and fusion based on uncertain evidence.
First, we review existing belief function theory-based medical image
segmentation methods and discuss their advantages and challenges. Second, we
present a semi-supervised medical image segmentation framework to decrease the
uncertainty caused by the lack of annotations with evidential segmentation and
evidence fusion. Third, we compare two evidential classifiers, evidential
neural network and radial basis function network, and show the effectiveness of
belief function theory in uncertainty quantification; we use the two evidential
classifiers with deep neural networks to construct deep evidential models for
lymphoma segmentation. Fourth, we present a multimodal medical image fusion
framework taking into account the reliability of each MR image source when
performing different segmentation tasks using mass functions and contextual
discounting.
Related papers
- Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis [3.8758525789991896]
An innovative multi-modal deep learning model is proposed to deeply integrate heterogeneous information from medical images and clinical reports.
For medical images, convolutional neural networks were used to extract high-dimensional features and capture key visual information.
For clinical report text, a two-way long and short-term memory network combined with an attention mechanism is used for deep semantic understanding.
arXiv Detail & Related papers (2024-05-23T02:22:10Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - MICA: Towards Explainable Skin Lesion Diagnosis via Multi-Level
Image-Concept Alignment [4.861768967055006]
We propose a multi-modal explainable disease diagnosis framework that meticulously aligns medical images and clinical-related concepts semantically at multiple strata.
Our method, while preserving model interpretability, attains high performance and label efficiency for concept detection and disease diagnosis.
arXiv Detail & Related papers (2024-01-16T17:45:01Z) - FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and
Visual Explanations [4.022446255159328]
Interpretable deep learning models have received widespread attention in the field of image recognition.
Many interpretability models that have been proposed still have problems of insufficient accuracy and interpretability in medical image disease diagnosis.
We propose feature-driven inference network (FeaInfNet) to solve these problems.
arXiv Detail & Related papers (2023-12-04T13:09:00Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Application of belief functions to medical image segmentation: A review [20.71275671848334]
Belief function theory is a formal framework for uncertainty analysis and multiple evidence fusion.
Medical image segmentation with belief function theory has shown significant benefits in clinical diagnosis and medical image research.
Future research could investigate both belief function theory and deep learning to achieve more promising and reliable segmentation results.
arXiv Detail & Related papers (2022-05-03T19:06:45Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.