Emergent Communication in Multi-Agent Reinforcement Learning for Future
Wireless Networks
- URL: http://arxiv.org/abs/2309.06021v1
- Date: Tue, 12 Sep 2023 07:40:53 GMT
- Title: Emergent Communication in Multi-Agent Reinforcement Learning for Future
Wireless Networks
- Authors: Marwa Chafii, Salmane Naoumi, Reda Alami, Ebtesam Almazrouei, Mehdi
Bennis, Merouane Debbah
- Abstract summary: Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems.
This paper articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities.
- Score: 30.678152524314225
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In different wireless network scenarios, multiple network entities need to
cooperate in order to achieve a common task with minimum delay and energy
consumption. Future wireless networks mandate exchanging high dimensional data
in dynamic and uncertain environments, therefore implementing communication
control tasks becomes challenging and highly complex. Multi-agent reinforcement
learning with emergent communication (EC-MARL) is a promising solution to
address high dimensional continuous control problems with partially observable
states in a cooperative fashion where agents build an emergent communication
protocol to solve complex tasks. This paper articulates the importance of
EC-MARL within the context of future 6G wireless networks, which imbues
autonomous decision-making capabilities into network entities to solve complex
tasks such as autonomous driving, robot navigation, flying base stations
network planning, and smart city applications. An overview of EC-MARL
algorithms and their design criteria are provided while presenting use cases
and research opportunities on this emerging topic.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks [16.722524706176767]
Wireless networks are increasingly facing challenges due to their expanding scale and complexity.
These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks.
We introduce WirelessAgent, a novel approach to develop AI agents capable of managing complex tasks in wireless networks.
arXiv Detail & Related papers (2024-09-12T11:48:01Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
Metaverse over wireless networks is an emerging use case of the sixth generation (6G) wireless systems.
We propose a novel semantic communication framework by decomposing the metaverse into human/machine agent-specific semantic multiverses (SMs)
An SM stored at each agent comprises a semantic encoder and a generator, leveraging recent advances in generative artificial intelligence (AI)
arXiv Detail & Related papers (2022-12-13T21:21:07Z) - AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer
Heterogeneous Networks [7.318997639507269]
We propose a novel layer-based HetNet architecture which distributes tasks associated with different machine learning approaches across network layers and entities.
Such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency.
arXiv Detail & Related papers (2022-06-04T22:03:19Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management.
The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
arXiv Detail & Related papers (2021-03-18T14:18:34Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.