Improving Generalization Capability of Deep Learning-Based Nuclei
Instance Segmentation by Non-deterministic Train Time and Deterministic Test
Time Stain Normalization
- URL: http://arxiv.org/abs/2309.06143v2
- Date: Tue, 9 Jan 2024 09:52:28 GMT
- Title: Improving Generalization Capability of Deep Learning-Based Nuclei
Instance Segmentation by Non-deterministic Train Time and Deterministic Test
Time Stain Normalization
- Authors: Amirreza Mahbod, Georg Dorffner, Isabella Ellinger, Ramona Woitek,
Sepideh Hatamikia
- Abstract summary: nuclei instance segmentation plays a fundamental role in a wide range of clinical and research applications.
Deep learning (DL)-based approaches have been shown to deliver the best performances.
We propose a novel method to improve the generalization capability of a DL-based automatic segmentation approach.
- Score: 0.674572634849505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of digital pathology and microscopic systems that can scan
and save whole slide histological images automatically, there is a growing
trend to use computerized methods to analyze acquired images. Among different
histopathological image analysis tasks, nuclei instance segmentation plays a
fundamental role in a wide range of clinical and research applications. While
many semi- and fully-automatic computerized methods have been proposed for
nuclei instance segmentation, deep learning (DL)-based approaches have been
shown to deliver the best performances. However, the performance of such
approaches usually degrades when tested on unseen datasets.
In this work, we propose a novel method to improve the generalization
capability of a DL-based automatic segmentation approach. Besides utilizing one
of the state-of-the-art DL-based models as a baseline, our method incorporates
non-deterministic train time and deterministic test time stain normalization,
and ensembling to boost the segmentation performance. We trained the model with
one single training set and evaluated its segmentation performance on seven
test datasets. Our results show that the proposed method provides up to 4.9%,
5.4%, and 5.9% better average performance in segmenting nuclei based on Dice
score, aggregated Jaccard index, and panoptic quality score, respectively,
compared to the baseline segmentation model.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
arXiv Detail & Related papers (2022-07-04T07:05:06Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
We present an end-to-end weakly-supervised framework to automatically detect and segment NeuN stained neuronal cells on histological images.
We integrate the state-of-the-art network, EfficientNet, into our U-Net-like architecture.
arXiv Detail & Related papers (2022-02-17T14:35:45Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
We propose a fully automated computer-aided diagnosis tool for classifying single-cell and slide images of cervical cancer.
We use the Sugeno Fuzzy Integral to ensemble the decision scores from three popular deep learning models, namely, Inception v3, DenseNet-161 and ResNet-34.
arXiv Detail & Related papers (2021-08-21T08:41:41Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
Methods that permit to produce accurate anatomical structure segmentation without using a large amount of fully annotated training images are highly desirable.
We propose Contour Transformer Network (CTN), a one-shot anatomy segmentor including a naturally built-in human-in-the-loop mechanism.
We demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning approaches.
arXiv Detail & Related papers (2020-07-06T20:27:38Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.