Wind Power Prediction across Different Locations using Deep Domain Adaptive Learning
- URL: http://arxiv.org/abs/2405.11188v1
- Date: Sat, 18 May 2024 05:57:52 GMT
- Title: Wind Power Prediction across Different Locations using Deep Domain Adaptive Learning
- Authors: Md Saiful Islam Sajol, Md Shazid Islam, A S M Jahid Hasan, Md Saydur Rahman, Jubair Yusuf,
- Abstract summary: Accurate prediction of wind power is essential for the grid integration of this intermittent renewable source.
A prediction model that learns from the data of a particular climatic region can suffer from being less robust.
A deep neural network (DNN) based domain adaptive approach is proposed to counter this drawback.
The proposed approach demonstrates higher accuracy ranging from 6.14% to even 28.44% compared to the traditional non-adaptive method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate prediction of wind power is essential for the grid integration of this intermittent renewable source and aiding grid planners in forecasting available wind capacity. Spatial differences lead to discrepancies in climatological data distributions between two geographically dispersed regions, consequently making the prediction task more difficult. Thus, a prediction model that learns from the data of a particular climatic region can suffer from being less robust. A deep neural network (DNN) based domain adaptive approach is proposed to counter this drawback. Effective weather features from a large set of weather parameters are selected using a random forest approach. A pre-trained model from the source domain is utilized to perform the prediction task, assuming no source data is available during target domain prediction. The weights of only the last few layers of the DNN model are updated throughout the task, keeping the rest of the network unchanged, making the model faster compared to the traditional approaches. The proposed approach demonstrates higher accuracy ranging from 6.14% to even 28.44% compared to the traditional non-adaptive method.
Related papers
- Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
Weather forecast products from machine learning or numerical weather models are currently generated on a global regular grid.
In this work, we train a heterogeneous graph neural network (GNN) end-to-end to downscale gridded forecasts to off-grid locations of interest.
Our approach demonstrates how the gap between global large-scale weather models and locally accurate predictions can be bridged to inform localized decision-making.
arXiv Detail & Related papers (2024-10-16T18:25:43Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Location Agnostic Adaptive Rain Precipitation Prediction using Deep
Learning [2.0971479389679337]
Rain precipitation prediction is a challenging task as it depends on weather and meteorological features which vary from location to location.
We have proposed an adaptive deep learning-based framework in order to provide a solution to the aforementioned challenges.
Our method has shown 43.51%, 5.09%, and 38.62% improvement after adaptation using a deep neural network for predicting the precipitation of Paris, Los Angeles, and Tokyo, respectively.
arXiv Detail & Related papers (2024-02-02T08:26:42Z) - Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar
Power Generation [0.0]
This paper proposes a domain adaptive deep learning-based framework to estimate solar power generation using weather features.
A feed-forward deep convolutional network model is trained for a known location dataset in a supervised manner and utilized to predict the solar power of an unknown location later.
Our method has shown an improvement of $10.47 %$, $7.44 %$, $5.11%$ in solar power prediction accuracy compared to best performing non-adaptive method for California (CA), Florida (FL) and New York (NY), respectively.
arXiv Detail & Related papers (2024-01-24T02:08:48Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.