論文の概要: Learning topological operations on meshes with application to block
decomposition of polygons
- arxiv url: http://arxiv.org/abs/2309.06484v1
- Date: Tue, 12 Sep 2023 18:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 16:52:56.985526
- Title: Learning topological operations on meshes with application to block
decomposition of polygons
- Title(参考訳): メッシュの位相操作の学習とポリゴンのブロック分解への応用
- Authors: Arjun Narayanan, Yulong Pan, Per-Olof Persson
- Abstract要約: 非構造および四角形メッシュ上でのメッシュ品質改善のための学習ベースのフレームワークを提案する。
本モデルは,事前学習を伴わない自己再生強化学習により,所定の目的関数に従ってメッシュ品質を向上させることを学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a learning based framework for mesh quality improvement on
unstructured triangular and quadrilateral meshes. Our model learns to improve
mesh quality according to a prescribed objective function purely via self-play
reinforcement learning with no prior heuristics. The actions performed on the
mesh are standard local and global element operations. The goal is to minimize
the deviation of the node degrees from their ideal values, which in the case of
interior vertices leads to a minimization of irregular nodes.
- Abstract(参考訳): 非構造三角形および四辺メッシュ上でのメッシュ品質向上のための学習ベースのフレームワークを提案する。
本モデルは,事前のヒューリスティックを伴わない自己プレイ強化学習を通じて,所定の目的関数に従ってメッシュ品質を改善することを学ぶ。
メッシュ上で実行されるアクションは、標準的なローカルおよびグローバル要素操作である。
その目的は、理想値からのノード次数の偏差を最小化することであり、内部頂点の場合、不規則ノードの最小化につながる。
関連論文リスト
- Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
点雲登録のための反復的最近点(ICP)のような反復的手法は、しばしば悪い局所最適性に悩まされる。
我々は,各地真実の周囲に凸景観を形成する学習を提案する。
論文 参考訳(メタデータ) (2024-11-16T01:13:04Z) - Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks [64.39488944424095]
本稿では,Message-Passing Monte Carlo という低差点集合を生成する機械学習手法を提案する。
MPMC点は、低次元と少数の点との差に関して、最適かほぼ最適であることが実証的に示されている。
論文 参考訳(メタデータ) (2024-05-23T21:17:20Z) - PoNQ: a Neural QEM-based Mesh Representation [33.81124790808585]
学習可能なメッシュ表現を,局所的な3次元サンプルポイントとその関連する正規値および擬似誤差メトリクス(QEM)を用いて導入する。
グローバルメッシュは、局所的な二次誤差の知識を効率的に活用することにより、PoNQから直接導出される。
SDFグリッドからの学習に基づくメッシュ予測により,PoNQの有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T16:15:08Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - A deep learning approach for the computation of curvature in the
level-set method [0.0]
そこで本研究では,2次元暗黙曲線の平均曲率をレベルセット法で推定する手法を提案する。
我々のアプローチは、様々な解像度の均一な格子に没入した円柱から構築された合成データセットにフィードフォワードニューラルネットワークを適合させることに基づいている。
論文 参考訳(メタデータ) (2020-02-04T00:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。