論文の概要: A Distributed Data-Parallel PyTorch Implementation of the Distributed
Shampoo Optimizer for Training Neural Networks At-Scale
- arxiv url: http://arxiv.org/abs/2309.06497v1
- Date: Tue, 12 Sep 2023 18:11:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 16:38:50.802752
- Title: A Distributed Data-Parallel PyTorch Implementation of the Distributed
Shampoo Optimizer for Training Neural Networks At-Scale
- Title(参考訳): 大規模ニューラルネットワーク学習のための分散シャンプー最適化器の分散データ並列PyTorch実装
- Authors: Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose
Gallego-Posada, Zhijing Li, Kaushik Rangadurai, Dheevatsa Mudigere, and
Michael Rabbat
- Abstract要約: Shampooは、ニューラルネットワークをトレーニングするためのAdaGradファミリーに属するオンラインおよび最適化アルゴリズムである。
我々は、PyTorchのディープネットワークを大規模にトレーニングするために実装したアルゴリズムと性能最適化の完全な記述を提供する。
- 参考スコア(独自算出の注目度): 5.206015354543744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shampoo is an online and stochastic optimization algorithm belonging to the
AdaGrad family of methods for training neural networks. It constructs a
block-diagonal preconditioner where each block consists of a coarse Kronecker
product approximation to full-matrix AdaGrad for each parameter of the neural
network. In this work, we provide a complete description of the algorithm as
well as the performance optimizations that our implementation leverages to
train deep networks at-scale in PyTorch. Our implementation enables fast
multi-GPU distributed data-parallel training by distributing the memory and
computation associated with blocks of each parameter via PyTorch's DTensor data
structure and performing an AllGather primitive on the computed search
directions at each iteration. This major performance enhancement enables us to
achieve at most a 10% performance reduction in per-step wall-clock time
compared against standard diagonal-scaling-based adaptive gradient methods. We
validate our implementation by performing an ablation study on training
ImageNet ResNet50, demonstrating Shampoo's superiority over standard training
recipes with minimal hyperparameter tuning.
- Abstract(参考訳): Shampooは、ニューラルネットワークをトレーニングするためのAdaGradファミリーに属する、オンラインで確率的な最適化アルゴリズムである。
ブロック対角プレコンディショナー(block-diagonal preconditioner)を構築し、各ブロックはニューラルネットワークの各パラメータのフルマトリックスアダグラードに近似する粗いクロネッカー積からなる。
本研究では,PyTorchのディープ・ネットワークを大規模にトレーニングするために,アルゴリズムの完全な記述と,実装が活用する性能最適化について述べる。
本稿では、pytorchのdtensorデータ構造を介して各パラメータのブロックに関連付けられたメモリと計算を分散し、各イテレーションで計算された検索方向に対してallgatherプリミティブを実行し、高速マルチgpu分散データ並列トレーニングを実現する。
この性能向上により、標準的な対角線スケーリングに基づく適応勾配法と比較して、ステップ毎のウォールタイムの10%以上の性能低下を達成できる。
我々は、ImageNet ResNet50のトレーニングに関するアブレーション研究を行い、最小限のハイパーパラメータチューニングによる標準的なトレーニングレシピよりもシャンプーの方が優れていることを示す。
関連論文リスト
- Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
本稿では、トレーニング中に、トレーニング済みのネットワークを適用することなく機能するディープニューラルネットワークのユニット/フィルタとレイヤプルーニングを組み合わせた新しいアルゴリズムを提案する。
提案アルゴリズムは,3つのパラメータのみを用いて,層対単位/フィルタプルーニングと計算量対パラメータ複雑性のバランスを保ちながら,学習精度とプルーニングレベルを最適に交換する。
論文 参考訳(メタデータ) (2024-11-14T02:00:22Z) - Automated Sizing and Training of Efficient Deep Autoencoders using
Second Order Algorithms [0.46040036610482665]
一般化線形分類器の多段階学習法を提案する。
検証エラーは不要な入力のプルーニングによって最小化される。
所望の出力は、Ho-Kashyapルールに似た方法で改善される。
論文 参考訳(メタデータ) (2023-08-11T16:48:31Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Online Convolutional Re-parameterization [51.97831675242173]
2段階のパイプラインであるオンライン畳み込み再パラメータ化(OREPA)は、複雑なトレーニング時間ブロックを単一の畳み込みに絞ることで、巨大なトレーニングオーバーヘッドを低減することを目的としている。
最先端のre-paramモデルと比較して、OREPAはトレーニング時間のメモリコストを約70%削減し、トレーニング速度を約2倍向上させることができる。
また、オブジェクト検出とセマンティックセグメンテーションの実験を行い、下流タスクに一貫した改善を示す。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - A Stochastic Bundle Method for Interpolating Networks [18.313879914379008]
本稿では,実験的な損失をゼロにすることができるディープニューラルネットワークのトレーニング手法を提案する。
各イテレーションにおいて,本手法は目的学習近似のバンドルとして知られる最大線形近似を構成する。
論文 参考訳(メタデータ) (2022-01-29T23:02:30Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Scheduling Optimization Techniques for Neural Network Training [3.1617796705744547]
本稿では,ニューラルネットワークトレーニングに有効なスケジューリング手法であるアウト・オブ・オーダー(oo)バックプロップを提案する。
単一GPU、データ並列、パイプライン並列トレーニングにおけるGPU利用は、ooobackpropを適用することで、一般的に改善できることを示す。
論文 参考訳(メタデータ) (2021-10-03T05:45:06Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。