論文の概要: Synthetic Text Generation using Hypergraph Representations
- arxiv url: http://arxiv.org/abs/2309.06550v2
- Date: Sat, 2 Dec 2023 19:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 22:20:35.634417
- Title: Synthetic Text Generation using Hypergraph Representations
- Title(参考訳): ハイパーグラフ表現を用いた合成テキスト生成
- Authors: Natraj Raman and Sameena Shah
- Abstract要約: 本稿では,まず文書をセマンティックフレームに分解し,この中間スパース形式を用いてテキストを生成するLCMベースの代替手法を提案する。
フレームはハイパーグラフを用いてモデル化され、フレーム内容の摂動を原則的に行うことができる。
我々のソリューションは、多様で一貫性があり、スタイル、感情、形式、構成、事実によって異なる文書を生成することを示す。
- 参考スコア(独自算出の注目度): 13.155707781696231
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generating synthetic variants of a document is often posed as text-to-text
transformation. We propose an alternate LLM based method that first decomposes
a document into semantic frames and then generates text using this interim
sparse format. The frames are modeled using a hypergraph, which allows
perturbing the frame contents in a principled manner. Specifically, new
hyperedges are mined through topological analysis and complex polyadic
relationships including hierarchy and temporal dynamics are accommodated. We
show that our solution generates documents that are diverse, coherent and vary
in style, sentiment, format, composition and facts.
- Abstract(参考訳): 文書の合成変種を生成することは、しばしばテキストからテキストへの変換として表される。
本稿では,まず文書をセマンティックフレームに分解し,この中間スパース形式を用いてテキストを生成するLCMベースの代替手法を提案する。
フレームはハイパーグラフを用いてモデル化され、フレーム内容を原則的に摂動することができる。
具体的には、新しいハイパーエッジをトポロジカル解析により掘り出し、階層構造や時間的ダイナミクスを含む複雑なポリエイド関係を許容する。
我々のソリューションは、多様で一貫性があり、スタイル、感情、形式、構成、事実が異なる文書を生成する。
関連論文リスト
- Modeling Unified Semantic Discourse Structure for High-quality Headline Generation [45.23071138765902]
文書意味論を表現するために,統一意味談話構造(S3)を提案する。
文、節、単語の階層的な構成は、本質的に全体文書の意味を特徴づける。
私たちの仕事は、見出しや要約生成以上の、幅広いドキュメントモデリングタスクに対してインストラクティブなものです。
論文 参考訳(メタデータ) (2024-03-23T09:18:53Z) - Typographic Text Generation with Off-the-Shelf Diffusion Model [7.542892664684078]
本稿では,タイポグラフィのテキストを付加・修正するタイポグラフィテキスト生成システムを提案する。
提案システムは,拡散モデルのための2つのオフ・ザ・シェルフ法,ControlNetとBlended Latent Diffusionを組み合わせた新しいシステムである。
論文 参考訳(メタデータ) (2024-02-22T06:15:51Z) - An Autoregressive Text-to-Graph Framework for Joint Entity and Relation
Extraction [4.194768796374315]
条件付きシーケンス生成問題としてフレーミングすることで、非構造化テキストから結合エンティティと関係抽出を行う新しい手法を提案する。
ノードがテキストスパンを表し、エッジが関係トリプレットを表す線形化グラフを生成する。
本手法では,スパンと関係型の動的語彙にポインティング機構を付加したトランスフォーマーエンコーダデコーダアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-01-02T18:32:14Z) - Style Generation: Image Synthesis based on Coarsely Matched Texts [10.939482612568433]
テキストベースのスタイル生成と呼ばれる新しいタスクを導入し、2段階の生成対角ネットワークを提案する。
第1ステージは、文特徴付き全体画像スタイルを生成し、第2ステージは、合成特徴付きで生成されたスタイルを洗練する。
本研究は,テキスト・イメージアライメントやストーリー・ビジュアライゼーションといった様々な応用によって実証された。
論文 参考訳(メタデータ) (2023-09-08T21:51:11Z) - Modelling the semantics of text in complex document layouts using graph
transformer networks [0.0]
本稿では,文書の読取パターンを近似したモデルを提案し,テキストスパン毎にユニークな意味表現を出力する。
アーキテクチャは構造化されたテキストのグラフ表現に基づいており、文書間で意味的に類似した情報を検索できるだけでなく、生成した埋め込み空間が有用な意味情報をキャプチャすることを示す。
論文 参考訳(メタデータ) (2022-02-18T11:49:06Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMERはトランスフォーマーをベースとした事前学習モデルであり、抽出要約のための多粒度スパースアテンションを持つ。
単一文書と複数文書の要約タスクの実験から,HETFORMERがルージュF1の最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-12T22:42:31Z) - Cycle-Consistent Inverse GAN for Text-to-Image Synthesis [101.97397967958722]
本稿では,テキスト・ツー・イメージ・ジェネレーションとテキスト・ガイドによる画像操作を行うために,Cycle-Consistent Inverse GANの統一フレームワークを提案する。
我々は、GANの反転モデルを学び、画像をGANの潜在空間に変換し、各画像の反転潜在符号を得る。
テキスト誘導最適化モジュールでは、反転潜在符号を最適化することにより、所望のセマンティック属性を持つ画像を生成する。
論文 参考訳(メタデータ) (2021-08-03T08:38:16Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGANはマルチモーダル画像生成とテキスト記述による操作のためのフレームワークである。
StyleGANインバージョンモジュールは、よく訓練されたStyleGANの潜在空間に実際の画像をマッピングする。
視覚言語的類似性は、画像とテキストを共通の埋め込み空間にマッピングすることで、テキスト画像マッチングを学ぶ。
インスタンスレベルの最適化は、操作におけるID保存のためのものだ。
論文 参考訳(メタデータ) (2020-12-06T16:20:19Z) - Text Editing by Command [82.50904226312451]
ニューラルテキスト生成における一般的なパラダイムは、単一のステップでテキストを生成するワンショット生成である。
この制限をユーザが既存のテキストを編集するコマンドを発行することでシステムと対話するインタラクティブテキスト生成設定で解決する。
このデータセットに基づいてトレーニングされたトランスフォーマーベースモデルであるInteractive Editorは,ベースラインを上回り,自動評価と人的評価の両方において肯定的な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-24T08:00:30Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。