Out of Distribution Detection via Domain-Informed Gaussian Process State
Space Models
- URL: http://arxiv.org/abs/2309.06655v2
- Date: Fri, 15 Sep 2023 21:20:20 GMT
- Title: Out of Distribution Detection via Domain-Informed Gaussian Process State
Space Models
- Authors: Alonso Marco and Elias Morley and Claire J. Tomlin
- Abstract summary: In order for robots to safely navigate in unseen scenarios, it is important to accurately detect out-of-training-distribution (OoD) situations online.
We propose a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions.
- Score: 22.24457254575906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order for robots to safely navigate in unseen scenarios using
learning-based methods, it is important to accurately detect
out-of-training-distribution (OoD) situations online. Recently, Gaussian
process state-space models (GPSSMs) have proven useful to discriminate
unexpected observations by comparing them against probabilistic predictions.
However, the capability for the model to correctly distinguish between in- and
out-of-training distribution observations hinges on the accuracy of these
predictions, primarily affected by the class of functions the GPSSM kernel can
represent. In this paper, we propose (i) a novel approach to embed existing
domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on
receding-horizon predictions. Domain knowledge is provided in the form of a
dataset, collected either in simulation or by using a nominal model. Numerical
results show that the informed kernel yields better regression quality with
smaller datasets, as compared to standard kernel choices. We demonstrate the
effectiveness of the OoD monitor on a real quadruped navigating an indoor
setting, which reliably classifies previously unseen terrains.
Related papers
- Recursive Gaussian Process State Space Model [4.572915072234487]
We propose a new online GPSSM method with adaptive capabilities for both operating domains and GP hyper parameters.
Online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning.
Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method.
arXiv Detail & Related papers (2024-11-22T02:22:59Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - Boosted Control Functions [10.503777692702952]
This work aims to bridge the gap between causal effect estimation and prediction tasks.
We establish a novel connection between the field of distribution from machine learning, and simultaneous equation models and control function from econometrics.
Within this framework, we propose a strong notion of invariance for a predictive model and compare it with existing (weaker) versions.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Wireless Channel Prediction in Partially Observed Environments [10.803318254625687]
Site-specific radio frequency (RF) propagation prediction increasingly relies on models built from visual data such as cameras and LIDAR sensors.
This paper introduces a method to extract statistical channel models, given partial observations of the surrounding environment.
It is shown that the proposed method can interpolate between fully statistical models when no partial information is available and fully deterministic models when the environment is completely observed.
arXiv Detail & Related papers (2022-07-03T01:46:57Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.