Recursive Gaussian Process State Space Model
- URL: http://arxiv.org/abs/2411.14679v1
- Date: Fri, 22 Nov 2024 02:22:59 GMT
- Title: Recursive Gaussian Process State Space Model
- Authors: Tengjie Zheng, Lin Cheng, Shengping Gong, Xu Huang,
- Abstract summary: We propose a new online GPSSM method with adaptive capabilities for both operating domains and GP hyper parameters.
Online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning.
Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method.
- Score: 4.572915072234487
- License:
- Abstract: Learning dynamical models from data is not only fundamental but also holds great promise for advancing principle discovery, time-series prediction, and controller design. Among various approaches, Gaussian Process State-Space Models (GPSSMs) have recently gained significant attention due to their combination of flexibility and interpretability. However, for online learning, the field lacks an efficient method suitable for scenarios where prior information regarding data distribution and model function is limited. To address this issue, this paper proposes a recursive GPSSM method with adaptive capabilities for both operating domains and Gaussian process (GP) hyperparameters. Specifically, we first utilize first-order linearization to derive a Bayesian update equation for the joint distribution between the system state and the GP model, enabling closed-form and domain-independent learning. Second, an online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning. Third, to support online hyperparameter optimization, we recover historical measurement information from the current filtering distribution. Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method compared to state-of-the-art online GPSSM techniques.
Related papers
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
We present a novel reduced-order Model (ROM) that exploits optimal transport theory and displacement to enhance the representation of nonlinear dynamics in complex systems.
We show improved accuracy and efficiency in predicting complex system behaviors, indicating the potential of this approach for a wide range of applications in computational physics and engineering.
arXiv Detail & Related papers (2024-11-13T16:29:33Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Adaptive Sparse Gaussian Process [0.0]
We propose the first adaptive sparse Gaussian Process (GP) able to address all these issues.
We first reformulate a variational sparse GP algorithm to make it adaptive through a forgetting factor.
We then propose updating a single inducing point of the sparse GP model together with the remaining model parameters every time a new sample arrives.
arXiv Detail & Related papers (2023-02-20T21:34:36Z) - Towards Flexibility and Interpretability of Gaussian Process State-Space
Model [4.75409418039844]
We propose a new class of probabilistic state-space models called TGPSSMs.
TGPSSMs leverage a parametric normalizing flow to enrich the GP priors in the standard GPSSM.
We present a scalable variational inference algorithm that offers a flexible and optimal structure for the variational distribution of latent states.
arXiv Detail & Related papers (2023-01-21T01:26:26Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Meta Learning MPC using Finite-Dimensional Gaussian Process
Approximations [0.9539495585692008]
Two key factors that hinder the practical applicability of learning methods in control are their high computational complexity and limited generalization capabilities to unseen conditions.
This paper makes use of a meta-learning approach for adaptive model predictive control, by learning a system model that leverages data from previous related tasks.
arXiv Detail & Related papers (2020-08-13T15:59:38Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.