Nonparametric Filtering, Estimation and Classification using Neural Jump ODEs
- URL: http://arxiv.org/abs/2412.03271v1
- Date: Wed, 04 Dec 2024 12:31:15 GMT
- Title: Nonparametric Filtering, Estimation and Classification using Neural Jump ODEs
- Authors: Jakob Heiss, Florian Krach, Thorsten Schmidt, FĂ©lix B. Tambe-Ndonfack,
- Abstract summary: Neural Jump ODEs model the conditional expectation between observations by neural ODEs and jump at arrival of new observations.
They have demonstrated effectiveness for fully data-driven online forecasting in settings with irregular and partial observations.
This work extends the framework to input-output systems, enabling direct applications in online filtering and classification.
- Score: 3.437372707846067
- License:
- Abstract: Neural Jump ODEs model the conditional expectation between observations by neural ODEs and jump at arrival of new observations. They have demonstrated effectiveness for fully data-driven online forecasting in settings with irregular and partial observations, operating under weak regularity assumptions. This work extends the framework to input-output systems, enabling direct applications in online filtering and classification. We establish theoretical convergence guarantees for this approach, providing a robust solution to $L^2$-optimal filtering. Empirical experiments highlight the model's superior performance over classical parametric methods, particularly in scenarios with complex underlying distributions. These results emphasise the approach's potential in time-sensitive domains such as finance and health monitoring, where real-time accuracy is crucial.
Related papers
- A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features [1.2289361708127877]
We propose a novel hierarchical likelihood learning framework for introducing gamma random effects into a Poisson deep neural network.
The proposed method simultaneously yields maximum likelihood estimators for fixed parameters and best unbiased predictors for random effects.
State-of-the-art network architectures can be easily implemented into the proposed h-likelihood framework.
arXiv Detail & Related papers (2023-10-18T01:54:48Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Out of Distribution Detection via Domain-Informed Gaussian Process State
Space Models [22.24457254575906]
In order for robots to safely navigate in unseen scenarios, it is important to accurately detect out-of-training-distribution (OoD) situations online.
We propose a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions.
arXiv Detail & Related papers (2023-09-13T01:02:42Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
We introduce the Neural Jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time.
We show that our model converges to the $L2$-optimal online prediction.
We experimentally show that our model outperforms the baselines in more complex learning tasks.
arXiv Detail & Related papers (2020-06-08T16:34:51Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.