論文の概要: Investigating the Impact of Action Representations in Policy Gradient
Algorithms
- arxiv url: http://arxiv.org/abs/2309.06921v1
- Date: Wed, 13 Sep 2023 12:41:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 14:19:30.360549
- Title: Investigating the Impact of Action Representations in Policy Gradient
Algorithms
- Title(参考訳): 政策勾配アルゴリズムにおける行動表現の影響の検討
- Authors: Jan Schneider, Pierre Schumacher, Daniel H\"aufle, Bernhard
Sch\"olkopf, Dieter B\"uchler
- Abstract要約: 強化学習(Reinforcement learning)は、複雑な現実世界のタスクを学習するための汎用的なフレームワークである。
RLアルゴリズムの学習性能への影響は、実際はあまり理解されていないことが多い。
- 参考スコア(独自算出の注目度): 11.383263522013868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning~(RL) is a versatile framework for learning to solve
complex real-world tasks. However, influences on the learning performance of RL
algorithms are often poorly understood in practice. We discuss different
analysis techniques and assess their effectiveness for investigating the impact
of action representations in RL. Our experiments demonstrate that the action
representation can significantly influence the learning performance on popular
RL benchmark tasks. The analysis results indicate that some of the performance
differences can be attributed to changes in the complexity of the optimization
landscape. Finally, we discuss open challenges of analysis techniques for RL
algorithms.
- Abstract(参考訳): Reinforcement Learning~(RL)は、複雑な現実世界のタスクを学習するための汎用的なフレームワークである。
しかし、RLアルゴリズムの学習性能への影響は、実際にはほとんど理解されていないことが多い。
本稿では,RLにおける行動表現の影響について検討し,その効果を評価する。
実験により,アクション表現がRLベンチマークタスクの学習性能に大きな影響を及ぼすことを示した。
分析結果から,最適化環境の複雑さの変化が性能の差異の原因となる可能性が示唆された。
最後に,rlアルゴリズムの解析技術の課題について述べる。
関連論文リスト
- Is Value Functions Estimation with Classification Plug-and-play for Offline Reinforcement Learning? [1.9116784879310031]
深層強化学習(RL)では、値関数はディープニューラルネットワークを用いて近似され、平均2乗誤差回帰目標を用いて訓練される。
近年の研究では、クロスエントロピー分類の目的を活かした代替手法が提案されている。
我々の研究は、オフラインのRLセットアップにおけるそのような置換の影響を実証的に調査することを目指している。
論文 参考訳(メタデータ) (2024-06-10T14:25:11Z) - Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
ほとんどの実世界の強化学習アプリケーションでは、状態情報は部分的にしか観測できないため、マルコフ決定プロセスの仮定を破る。
我々は、部分的な観察から実践的な強化学習のためのコヒーレントな枠組みと抽出可能なアルゴリズムアプローチへと導く表現に基づく視点を開発する。
提案アルゴリズムは,様々なベンチマークで部分的な観察を行い,最先端の性能を超えることができることを実証的に実証した。
論文 参考訳(メタデータ) (2023-11-20T23:56:58Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning [1.3106063755117399]
SOTA OMRLアルゴリズムの1つであるFOCALを、タスク内注意メカニズムとタスク間コントラスト学習目標を組み込むことで改善します。
理論解析と実験を行い、エンドツーエンドおよびモデルフリーの優れた性能、効率、堅牢性を実証します。
論文 参考訳(メタデータ) (2021-02-22T05:05:16Z) - How to Make Deep RL Work in Practice [15.740760669623876]
最新のアルゴリズムの報告結果は、しばしば再現が困難である。
デフォルトで使用するテクニックのどれを推奨し、RLに特化されたソリューションの恩恵を受ける可能性のある領域を強調します。
論文 参考訳(メタデータ) (2020-10-25T10:37:54Z) - What Matters In On-Policy Reinforcement Learning? A Large-Scale
Empirical Study [50.79125250286453]
オンライン強化学習(RL)は、様々な連続制御タスクにうまく適用されている。
しかし、最先端の実装は、結果のエージェントのパフォーマンスに強く影響を与える、多数の低レベルかつ高レベルの設計決定を下します。
これらの選択は通常、文献で広く議論されることはなく、アルゴリズムの公開記述とそれらの実装の間に相違が生じている。
我々は,「50以上の選択肢」を統一型オンラインRLフレームワークに実装し,大規模な実証研究におけるその影響を調査する。
論文 参考訳(メタデータ) (2020-06-10T17:59:03Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
本稿では,2つの一般的なアルゴリズムのケーススタディにより,ディープポリシー勾配アルゴリズムにおけるアルゴリズムの進歩のルーツについて検討する。
具体的には,「コードレベルの最適化」の結果について検討する。
以上の結果から, (a) TRPOに対するPPOの累積報酬のほとんどを担っていることが示され, (b) RL メソッドの動作方法が根本的に変化していることが示唆された。
論文 参考訳(メタデータ) (2020-05-25T16:24:59Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。