Native Language Identification with Big Bird Embeddings
- URL: http://arxiv.org/abs/2309.06923v1
- Date: Wed, 13 Sep 2023 12:47:40 GMT
- Title: Native Language Identification with Big Bird Embeddings
- Authors: Sergey Kramp, Giovanni Cassani, Chris Emmery
- Abstract summary: Native Language Identification (NLI) intends to classify an author's native language based on their writing in another language.
The current work investigates if input size is a limiting factor, and shows that classifiers trained using Big Bird embeddings outperform linguistic feature engineering models by a large margin on the Reddit-L2 dataset.
- Score: 0.3069335774032178
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Native Language Identification (NLI) intends to classify an author's native
language based on their writing in another language. Historically, the task has
heavily relied on time-consuming linguistic feature engineering, and
transformer-based NLI models have thus far failed to offer effective, practical
alternatives. The current work investigates if input size is a limiting factor,
and shows that classifiers trained using Big Bird embeddings outperform
linguistic feature engineering models by a large margin on the Reddit-L2
dataset. Additionally, we provide further insight into input length
dependencies, show consistent out-of-sample performance, and qualitatively
analyze the embedding space. Given the effectiveness and computational
efficiency of this method, we believe it offers a promising avenue for future
NLI work.
Related papers
- Do LLMs Need to Think in One Language? Correlation between Latent Language and Task Performance [38.785363522684385]
We study how the discrepancy between the latent language and the input and output language affects downstream task performance.<n>Our work varies the input prompt languages across multiple downstream tasks and analyzes the correlation between consistency in latent language and task performance.<n> Experimental results indicate that maintaining consistency in latent language is not always necessary for optimal downstream task performance.
arXiv Detail & Related papers (2025-05-27T17:30:57Z) - Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models [55.14276067678253]
This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in Large Language Models (LLMs)<n>We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models.<n>Further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns.
arXiv Detail & Related papers (2025-05-24T12:31:27Z) - Efficient Continual Pre-training of LLMs for Low-resource Languages [45.44796295841526]
We develop a new algorithm to select a subset of texts from a larger corpus.
In search of further improvement, we design a new algorithm to select tokens to include in the LLM vocabulary.
arXiv Detail & Related papers (2024-12-13T16:13:35Z) - Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - Assessing Code Generation with Intermediate Languages [6.999311675957218]
This study explores the utilization of intermediate languages, including various programming languages, natural language solutions, and pseudo-code.
Our findings reveal that intermediate languages generally exhibit greater efficacy in larger models that have not yet achieved state-of-the-art performance.
arXiv Detail & Related papers (2024-07-07T15:35:41Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectal datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - Improving Domain-Specific Retrieval by NLI Fine-Tuning [64.79760042717822]
This article investigates the fine-tuning potential of natural language inference (NLI) data to improve information retrieval and ranking.
We employ both monolingual and multilingual sentence encoders fine-tuned by a supervised method utilizing contrastive loss and NLI data.
Our results point to the fact that NLI fine-tuning increases the performance of the models in both tasks and both languages, with the potential to improve mono- and multilingual models.
arXiv Detail & Related papers (2023-08-06T12:40:58Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual
Understanding (XLU) [0.0]
We focus on improving the original XNLI dataset by re-translating the MNLI dataset in all of the 14 different languages present in XNLI.
We also perform experiments by training models in all 15 languages and analyzing their performance on the task of natural language inference.
arXiv Detail & Related papers (2023-01-16T17:24:57Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Learning Universal Representations from Word to Sentence [89.82415322763475]
This work introduces and explores the universal representation learning, i.e., embeddings of different levels of linguistic unit in a uniform vector space.
We present our approach of constructing analogy datasets in terms of words, phrases and sentences.
We empirically verify that well pre-trained Transformer models incorporated with appropriate training settings may effectively yield universal representation.
arXiv Detail & Related papers (2020-09-10T03:53:18Z) - Learning Spoken Language Representations with Neural Lattice Language
Modeling [39.50831917042577]
We propose a framework that trains neural lattice language models to provide contextualized representations for spoken language understanding tasks.
The proposed two-stage pre-training approach reduces the demands of speech data and has better efficiency.
arXiv Detail & Related papers (2020-07-06T10:38:03Z) - An Empirical Study of Factors Affecting Language-Independent Models [11.976665726887733]
We show that language-independent models can be comparable to or even outperforms the models trained using monolingual data.
We experiment language-independent models with many different languages and show that they are more suitable for typologically similar languages.
arXiv Detail & Related papers (2019-12-30T22:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.