Masked Transformer for Electrocardiogram Classification
- URL: http://arxiv.org/abs/2309.07136v3
- Date: Tue, 23 Apr 2024 01:39:28 GMT
- Title: Masked Transformer for Electrocardiogram Classification
- Authors: Ya Zhou, Xiaolin Diao, Yanni Huo, Yang Liu, Xiaohan Fan, Wei Zhao,
- Abstract summary: Masked Transformer for ECG classification (MTECG) is a simple yet effective method which significantly outperforms recent state-of-the-art algorithms in ECG classification.
We construct the Fuwai dataset comprising 220,251 ECG recordings with a broad range of diagnoses, annotated by medical experts.
- Score: 7.229662895786343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram (ECG) is one of the most important diagnostic tools in clinical applications. With the advent of advanced algorithms, various deep learning models have been adopted for ECG tasks. However, the potential of Transformer for ECG data has not been fully realized, despite their widespread success in computer vision and natural language processing. In this work, we present Masked Transformer for ECG classification (MTECG), a simple yet effective method which significantly outperforms recent state-of-the-art algorithms in ECG classification. Our approach adapts the image-based masked autoencoders to self-supervised representation learning from ECG time series. We utilize a lightweight Transformer for the encoder and a 1-layer Transformer for the decoder. The ECG signal is split into a sequence of non-overlapping segments along the time dimension, and learnable positional embeddings are added to preserve the sequential information. We construct the Fuwai dataset comprising 220,251 ECG recordings with a broad range of diagnoses, annotated by medical experts, to explore the potential of Transformer. A strong pre-training and fine-tuning recipe is proposed from the empirical study. The experiments demonstrate that the proposed method increases the macro F1 scores by 3.4%-27.5% on the Fuwai dataset, 9.9%-32.0% on the PTB-XL dataset, and 9.4%-39.1% on a multicenter dataset, compared to the alternative methods. We hope that this study could direct future research on the application of Transformer to more ECG tasks.
Related papers
- ECG-FM: An Open Electrocardiogram Foundation Model [3.611746032873298]
We present ECG-FM, an open foundation model for ECG analysis.
ECG-FM adopts a transformer-based architecture and is pretrained on 2.5 million samples.
We show how its command of contextual information results in strong performance, rich pretrained embeddings, and reliable interpretability.
arXiv Detail & Related papers (2024-08-09T17:06:49Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
We propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder.
Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view.
We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights.
arXiv Detail & Related papers (2022-07-21T22:17:21Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Performer: A Novel PPG to ECG Reconstruction Transformer For a Digital
Biomarker of Cardiovascular Disease Detection [0.0]
Cardiovascular diseases (CVDs) have become the top one cause of death; three-quarters of these deaths occur in lower-income communities.
Electrocardiography (ECG) is infeasible for continuous cardiac monitoring due to its requirement for user participation.
Photoplethysmography is easy to collect, but the limited accuracy constrains its clinical usage.
arXiv Detail & Related papers (2022-04-25T17:10:13Z) - Learning ECG Representations based on Manipulated Temporal-Spatial
Reverse Detection [11.615287369669971]
We propose a straightforward but effective approach to learn ECG representations.
Inspired by the temporal and spatial characteristics of ECG, we flip the original signals horizontally, vertically, and both horizontally and vertically.
Results show that the ECG representations learned with our method lead to remarkable performances on the downstream task.
arXiv Detail & Related papers (2022-02-25T02:01:09Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - A Transformer Architecture for Stress Detection from ECG [7.559720049837459]
We present a deep neural network based on convolutional layers and a transformer mechanism to detect stress using ECG signals.
Our experiments show that the proposed model achieves strong results, comparable or better than the state-of-the-art models for ECG-based stress detection.
arXiv Detail & Related papers (2021-08-22T14:34:44Z) - Robustness of convolutional neural networks to physiological ECG noise [0.0]
The electrocardiogram (ECG) is one of the most widespread diagnostic tools in healthcare and supports the diagnosis of cardiovascular disorders.
Deep learning methods are a successful and popular technique to detect indications of disorders from an ECG signal.
There are open questions around the robustness of these methods to various factors, including physiological ECG noise.
We generate clean and noisy versions of an ECG dataset before applying Symmetric Projection Attractor Reconstruction (SPAR) and scalogram image transformations.
A pretrained convolutional neural network is trained using transfer learning to classify these image transforms.
arXiv Detail & Related papers (2021-08-02T08:16:32Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.