Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability
- URL: http://arxiv.org/abs/2309.07156v4
- Date: Sun, 14 Jan 2024 14:33:19 GMT
- Title: Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability
- Authors: Shivam Sharma, Suvadeep Maiti, S. Mythirayee, Srijithesh Rajendran,
Raju Surampudi Bapi
- Abstract summary: This study presents an end-to-end deep learning (DL) model which integrates squeeze and excitation blocks within the residual network to extract features and stacked Bi-LSTM to understand complex temporal dependencies.
A distinctive aspect of this study is the adaptation of GradCam for sleep staging, marking the first instance of an explainable DL model in this domain with alignment of its decision-making with sleep expert's insights.
- Score: 5.747465732334616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated Sleep stage classification using raw single channel EEG is a
critical tool for sleep quality assessment and disorder diagnosis. However,
modelling the complexity and variability inherent in this signal is a
challenging task, limiting their practicality and effectiveness in clinical
settings. To mitigate these challenges, this study presents an end-to-end deep
learning (DL) model which integrates squeeze and excitation blocks within the
residual network to extract features and stacked Bi-LSTM to understand complex
temporal dependencies. A distinctive aspect of this study is the adaptation of
GradCam for sleep staging, marking the first instance of an explainable DL
model in this domain with alignment of its decision-making with sleep expert's
insights. We evaluated our model on the publically available datasets
(SleepEDF-20, SleepEDF-78, and SHHS), achieving Macro-F1 scores of 82.5, 78.9,
and 81.9, respectively. Additionally, a novel training efficiency enhancement
strategy was implemented by increasing stride size, leading to 8x faster
training times with minimal impact on performance. Comparative analyses
underscore our model outperforms all existing baselines, indicating its
potential for clinical usage.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG [2.3310092106321365]
Sleep stage classification is a pivotal aspect of diagnosing sleep disorders and evaluating sleep quality.
Recent advancements in deep learning have substantially propelled the automation of sleep stage classification.
This paper introduces NeuroNet, a self-supervised learning framework designed to harness unlabeled single-channel sleep electroencephalogram (EEG) signals.
arXiv Detail & Related papers (2024-04-10T18:32:22Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage
Classification [1.565361244756411]
We introduce an innovative approach to automated sleep stage classification using EOG signals, addressing the discomfort and impracticality associated with EEG data acquisition.
Our proposed SE-Resnet-Transformer model provides an accurate classification of five distinct sleep stages from raw EOG signal.
arXiv Detail & Related papers (2023-09-25T16:23:39Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - SleepEGAN: A GAN-enhanced Ensemble Deep Learning Model for Imbalanced
Classification of Sleep Stages [4.649202082648198]
This paper develops a generative adversarial network (GAN)-powered ensemble deep learning model, named SleepEGAN, for the imbalanced classification of sleep stages.
We show that the proposed method can improve classification accuracy compared to several existing state-of-the-art methods using three public sleep datasets.
arXiv Detail & Related papers (2023-07-04T01:56:00Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - Do Not Sleep on Linear Models: Simple and Interpretable Techniques
Outperform Deep Learning for Sleep Scoring [1.6339105551302067]
We argue that most deep learning solutions for sleep scoring are limited in their real-world applicability as they are hard to train, deploy, and reproduce.
In this work, we revisit the problem of sleep stage classification using classical machine learning.
Results show that state-of-the-art performance can be achieved with a conventional machine learning pipeline.
arXiv Detail & Related papers (2022-07-15T21:03:11Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based
Sleep Stage Classifier to New Individual Subject Using Meta-Learning [15.451212330924447]
We propose the transfer learning framework, entitled MetaSleepLearner, based on Model Agnostic Meta-Learning (MAML)
In comparison to the conventional approach, MetaSleepLearner achieved a range of 5.4% to 17.7% improvement with statistical difference in the mean of both approaches.
This is the first work that investigated a non-conventional pre-training method, MAML, resulting in a possibility for human-machine collaboration in sleep stage classification.
arXiv Detail & Related papers (2020-04-08T16:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.