NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG
- URL: http://arxiv.org/abs/2404.17585v2
- Date: Mon, 13 May 2024 13:55:11 GMT
- Title: NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG
- Authors: Cheol-Hui Lee, Hakseung Kim, Hyun-jee Han, Min-Kyung Jung, Byung C. Yoon, Dong-Joo Kim,
- Abstract summary: Sleep stage classification is a pivotal aspect of diagnosing sleep disorders and evaluating sleep quality.
Recent advancements in deep learning have substantially propelled the automation of sleep stage classification.
This paper introduces NeuroNet, a self-supervised learning framework designed to harness unlabeled single-channel sleep electroencephalogram (EEG) signals.
- Score: 2.3310092106321365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification of sleep stages is a pivotal aspect of diagnosing sleep disorders and evaluating sleep quality. However, the conventional manual scoring process, conducted by clinicians, is time-consuming and prone to human bias. Recent advancements in deep learning have substantially propelled the automation of sleep stage classification. Nevertheless, challenges persist, including the need for large datasets with labels and the inherent biases in human-generated annotations. This paper introduces NeuroNet, a self-supervised learning (SSL) framework designed to effectively harness unlabeled single-channel sleep electroencephalogram (EEG) signals by integrating contrastive learning tasks and masked prediction tasks. NeuroNet demonstrates superior performance over existing SSL methodologies through extensive experimentation conducted across three polysomnography (PSG) datasets. Additionally, this study proposes a Mamba-based temporal context module to capture the relationships among diverse EEG epochs. Combining NeuroNet with the Mamba-based temporal context module has demonstrated the capability to achieve, or even surpass, the performance of the latest supervised learning methodologies, even with a limited amount of labeled data. This study is expected to establish a new benchmark in sleep stage classification, promising to guide future research and applications in the field of sleep analysis.
Related papers
- Data-Efficient Sleep Staging with Synthetic Time Series Pretraining [1.642094639107215]
We propose a pretraining task termed "frequency pretraining" to pretrain a neural network for sleep staging.
Our experiments demonstrate that our method surpasses fully supervised learning in scenarios with limited data and few subjects.
arXiv Detail & Related papers (2024-03-13T14:57:10Z) - Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability [5.747465732334616]
This study presents an end-to-end deep learning (DL) model which integrates squeeze and excitation blocks within the residual network to extract features and stacked Bi-LSTM to understand complex temporal dependencies.
A distinctive aspect of this study is the adaptation of GradCam for sleep staging, marking the first instance of an explainable DL model in this domain with alignment of its decision-making with sleep expert's insights.
arXiv Detail & Related papers (2023-09-10T17:56:03Z) - ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph
Learning with Attentive Temporal Aggregation [4.014524824655106]
This work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint-temporal graphs.
The proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.
arXiv Detail & Related papers (2022-12-09T14:34:58Z) - Predicting Sleeping Quality using Convolutional Neural Networks [6.236890292833385]
We propose a Convolution Neural Network (CNN) architecture that improves the classification performance.
We benchmark the classification performance from different methods, including traditional machine learning methods.
The accuracy, sensitivity, specificity, precision, recall, and F-score are reported and will serve as a baseline to simulate the research.
arXiv Detail & Related papers (2022-04-24T21:48:54Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based
Sleep Stage Classifier to New Individual Subject Using Meta-Learning [15.451212330924447]
We propose the transfer learning framework, entitled MetaSleepLearner, based on Model Agnostic Meta-Learning (MAML)
In comparison to the conventional approach, MetaSleepLearner achieved a range of 5.4% to 17.7% improvement with statistical difference in the mean of both approaches.
This is the first work that investigated a non-conventional pre-training method, MAML, resulting in a possibility for human-machine collaboration in sleep stage classification.
arXiv Detail & Related papers (2020-04-08T16:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.