Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion
- URL: http://arxiv.org/abs/2309.07164v1
- Date: Mon, 11 Sep 2023 15:28:19 GMT
- Title: Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion
- Authors: Anshul Ranjan, Kaushik Jegadeesan
- Abstract summary: This paper presents a novel hybrid Automatic Speech Recognition (ASR) system designed specifically for resource-constrained robots.
The proposed approach combines Hidden Markov Models (HMMs) with deep learning models and leverages socket programming to distribute processing tasks effectively.
In this architecture, the HMM-based processing takes place within the robot, while a separate PC handles the deep learning model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a novel hybrid Automatic Speech Recognition (ASR) system
designed specifically for resource-constrained robots. The proposed approach
combines Hidden Markov Models (HMMs) with deep learning models and leverages
socket programming to distribute processing tasks effectively. In this
architecture, the HMM-based processing takes place within the robot, while a
separate PC handles the deep learning model. This synergy between HMMs and deep
learning enhances speech recognition accuracy significantly. We conducted
experiments across various robotic platforms, demonstrating real-time and
precise speech recognition capabilities. Notably, the system exhibits
adaptability to changing acoustic conditions and compatibility with low-power
hardware, making it highly effective in environments with limited computational
resources. This hybrid ASR paradigm opens up promising possibilities for
seamless human-robot interaction. In conclusion, our research introduces a
pioneering dimension to ASR techniques tailored for robotics. By employing
socket programming to distribute processing tasks across distinct devices and
strategically combining HMMs with deep learning models, our hybrid ASR system
showcases its potential to enable robots to comprehend and respond to spoken
language adeptly, even in environments with restricted computational resources.
This paradigm sets a innovative course for enhancing human-robot interaction
across a wide range of real-world scenarios.
Related papers
- Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee [1.7456666582626115]
This study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection.
The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
arXiv Detail & Related papers (2024-11-26T11:39:43Z) - State-of-the-art in Robot Learning for Multi-Robot Collaboration: A Comprehensive Survey [2.686336957004475]
Multi-robot systems (MRS) built on this foundation are undergoing drastic evolution.
The fusion of artificial intelligence technology with robot hardware is seeing broad application possibilities for MRS.
This article surveys the state-of-the-art of robot learning in the context of Multi-Robot Cooperation.
arXiv Detail & Related papers (2024-08-03T21:22:08Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
We introduce a systematic learning framework called SAGCI-system towards achieving the above four requirements.
Our system first takes the raw point clouds gathered by the camera mounted on the robot's wrist as the inputs and produces initial modeling of the surrounding environment represented as a URDF.
The robot then utilizes the interactive perception to interact with the environments to online verify and modify the URDF.
arXiv Detail & Related papers (2021-11-29T16:53:49Z) - Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models [29.34375999491465]
A core challenge for an autonomous agent acting in the real world is to adapt its repertoire of skills to cope with its noisy perception and dynamics.
To scale learning of skills to long-horizon tasks, robots should be able to learn and later refine their skills in a structured manner.
We proposeSAC-GMM, a novel hybrid approach that learns robot skills through a dynamical system and adapts the learned skills in their own trajectory distribution space.
arXiv Detail & Related papers (2021-11-25T15:36:11Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z) - The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents [54.63186041942257]
We propose a virtual simulation environment that implements the Chef's Hat card game, designed to be used in Human-Robot Interaction scenarios.
This paper provides a controllable and reproducible scenario for reinforcement-learning algorithms.
arXiv Detail & Related papers (2020-03-12T15:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.