Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee
- URL: http://arxiv.org/abs/2411.17347v1
- Date: Tue, 26 Nov 2024 11:39:43 GMT
- Title: Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee
- Authors: Filippo Ansalone, Flavio Maiorana, Daniele Affinita, Flavio Volpi, Eugenio Bugli, Francesco Petri, Michele Brienza, Valerio Spagnoli, Vincenzo Suriani, Daniele Nardi, Domenico D. Bloisi,
- Abstract summary: This study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection.
The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
- Score: 1.7456666582626115
- License:
- Abstract: Advancing human-robot communication is crucial for autonomous systems operating in dynamic environments, where accurate real-time interpretation of human signals is essential. RoboCup provides a compelling scenario for testing these capabilities, requiring robots to understand referee gestures and whistle with minimal network reliance. Using the NAO robot platform, this study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection. The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
Related papers
- LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
Collaboration in large robot swarms to achieve a common global objective is a challenging problem in large environments.
The robots must execute a Perception-Action-Communication loop -- they perceive their local environment, communicate with other robots, and take actions in real time.
Recently, this has been addressed using Graph Neural Networks (GNNs) for applications such as flocking and coverage control.
This paper proposes a framework for asynchronous PAC in robot swarms, where decentralized GNNs are used to compute navigation actions and generate messages for communication.
arXiv Detail & Related papers (2023-09-18T21:20:50Z) - Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion [0.0]
This paper presents a novel hybrid Automatic Speech Recognition (ASR) system designed specifically for resource-constrained robots.
The proposed approach combines Hidden Markov Models (HMMs) with deep learning models and leverages socket programming to distribute processing tasks effectively.
In this architecture, the HMM-based processing takes place within the robot, while a separate PC handles the deep learning model.
arXiv Detail & Related papers (2023-09-11T15:28:19Z) - Simulation of robot swarms for learning communication-aware coordination [0.0]
We train end-to-end Neural Networks that take as input local observations obtained from an omniscient centralised controller.
Experiments are run in Enki, a high-performance open-source simulator for planar robots.
arXiv Detail & Related papers (2023-02-25T17:17:40Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Autonomous Intruder Detection Using a ROS-Based Multi-Robot System
Equipped with 2D-LiDAR Sensors [0.5512295869673147]
This paper proposes a multi-robot system for intruder detection in a single-range-sensor-per-robot scenario with centralized processing of detections from all robots by our central bot MIDNet.
This work is aimed at providing an autonomous multi-robot security solution for a warehouse in the absence of human personnel.
arXiv Detail & Related papers (2020-11-07T19:49:07Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
We have proposed an Inception module based Convolutional Neural Network Architecture.
The model is implemented in a humanoid robot, NAO in real time and robustness of the model is evaluated.
arXiv Detail & Related papers (2020-01-12T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.