Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach
- URL: http://arxiv.org/abs/2309.07265v2
- Date: Mon, 18 Sep 2023 18:28:29 GMT
- Title: Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach
- Authors: Ahmad M. Nagib, Hatem Abou-Zeid, and Hossam S. Hassanein
- Abstract summary: We propose and design a hybrid TL-aided approach to provide safe and accelerated convergence in DRL-based O-RAN slicing.
The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios.
- Score: 20.344810727033327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The open radio access network (O-RAN) architecture supports intelligent
network control algorithms as one of its core capabilities. Data-driven
applications incorporate such algorithms to optimize radio access network (RAN)
functions via RAN intelligent controllers (RICs). Deep reinforcement learning
(DRL) algorithms are among the main approaches adopted in the O-RAN literature
to solve dynamic radio resource management problems. However, despite the
benefits introduced by the O-RAN RICs, the practical adoption of DRL algorithms
in real network deployments falls behind. This is primarily due to the slow
convergence and unstable performance exhibited by DRL agents upon deployment
and when encountering previously unseen network conditions. In this paper, we
address these challenges by proposing transfer learning (TL) as a core
component of the training and deployment workflows for the DRL-based
closed-loop control of O-RAN functionalities. To this end, we propose and
design a hybrid TL-aided approach that leverages the advantages of both policy
reuse and distillation TL methods to provide safe and accelerated convergence
in DRL-based O-RAN slicing. We conduct a thorough experiment that accommodates
multiple services, including real VR gaming traffic to reflect practical
scenarios of O-RAN slicing. We also propose and implement policy reuse and
distillation-aided DRL and non-TL-aided DRL as three separate baselines. The
proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the
average initial reward value and the percentage of converged scenarios, and a
64.6% decrease in reward variance while maintaining fast convergence and
enhancing the generalizability compared with the baselines.
Related papers
- How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
We propose a novel forecasting-aided DRL approach and its respective O-RAN practical deployment workflow to enhance DRL convergence.
Our approach shows up to 22.8%, 86.3%, and 300% improvements in the average initial reward value, convergence rate, and number of converged scenarios respectively.
arXiv Detail & Related papers (2023-09-01T14:30:04Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework [47.57576667752444]
We jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent steering application in open RAN (O-RAN)
Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iv) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization
arXiv Detail & Related papers (2023-02-06T11:37:06Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Toward Safe and Accelerated Deep Reinforcement Learning for
Next-Generation Wireless Networks [21.618559590818236]
We discuss two key practical challenges that are faced but rarely tackled when developing DRL-based RRM solutions.
In particular, we discuss the need to have safe and accelerated DRL-based RRM solutions that mitigate the slow convergence and performance instability exhibited by DRL algorithms.
arXiv Detail & Related papers (2022-09-16T04:50:49Z) - FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters [0.0]
This paper introduces a new framework for benchmarking the performance of an RL agent in network environments simulated with ns-3.
Within this framework, we demonstrate that an RL agent without domain-specific knowledge can learn how to efficiently adjust Radio Access Network (RAN) parameters to match offline optimization in static scenarios.
arXiv Detail & Related papers (2022-09-08T12:58:09Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.