FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters
- URL: http://arxiv.org/abs/2209.13540v1
- Date: Thu, 8 Sep 2022 12:58:09 GMT
- Title: FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters
- Authors: Vegard Edvardsen, Gard Spreemann, Jeriek Van den Abeele
- Abstract summary: This paper introduces a new framework for benchmarking the performance of an RL agent in network environments simulated with ns-3.
Within this framework, we demonstrate that an RL agent without domain-specific knowledge can learn how to efficiently adjust Radio Access Network (RAN) parameters to match offline optimization in static scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing complexity and capacity demands for mobile networks necessitate
innovative techniques for optimizing resource usage. Meanwhile, recent
breakthroughs have brought Reinforcement Learning (RL) into the domain of
continuous control of real-world systems. As a step towards RL-based network
control, this paper introduces a new framework for benchmarking the performance
of an RL agent in network environments simulated with ns-3. Within this
framework, we demonstrate that an RL agent without domain-specific knowledge
can learn how to efficiently adjust Radio Access Network (RAN) parameters to
match offline optimization in static scenarios, while also adapting on the fly
in dynamic scenarios, in order to improve the overall user experience. Our
proposed framework may serve as a foundation for further work in developing
workflows for designing RL-based RAN control algorithms.
Related papers
- Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
This research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL)
The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control.
arXiv Detail & Related papers (2024-02-24T23:25:35Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
We propose and design a hybrid TL-aided approach to provide safe and accelerated convergence in DRL-based O-RAN slicing.
The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios.
arXiv Detail & Related papers (2023-09-13T18:58:34Z) - How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
We propose a novel forecasting-aided DRL approach and its respective O-RAN practical deployment workflow to enhance DRL convergence.
Our approach shows up to 22.8%, 86.3%, and 300% improvements in the average initial reward value, convergence rate, and number of converged scenarios respectively.
arXiv Detail & Related papers (2023-09-01T14:30:04Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.