Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework
- URL: http://arxiv.org/abs/2302.02711v2
- Date: Mon, 29 May 2023 14:54:42 GMT
- Title: Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework
- Authors: Van-Dinh Nguyen, Thang X. Vu, Nhan Thanh Nguyen, Dinh C. Nguyen,
Markku Juntti, Nguyen Cong Luong, Dinh Thai Hoang, Diep N. Nguyen and Symeon
Chatzinotas
- Abstract summary: We jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent steering application in open RAN (O-RAN)
Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iv) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization
- Score: 47.57576667752444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To enable an intelligent, programmable and multi-vendor radio access network
(RAN) for 6G networks, considerable efforts have been made in standardization
and development of open RAN (O-RAN). So far, however, the applicability of
O-RAN in controlling and optimizing RAN functions has not been widely
investigated. In this paper, we jointly optimize the flow-split distribution,
congestion control and scheduling (JFCS) to enable an intelligent traffic
steering application in O-RAN. Combining tools from network utility
maximization and stochastic optimization, we introduce a multi-layer
optimization framework that provides fast convergence, long-term
utility-optimality and significant delay reduction compared to the
state-of-the-art and baseline RAN approaches. Our main contributions are
three-fold: i) we propose the novel JFCS framework to efficiently and
adaptively direct traffic to appropriate radio units; ii) we develop
low-complexity algorithms based on the reinforcement learning, inner
approximation and bisection search methods to effectively solve the JFCS
problem in different time scales; and iii) the rigorous theoretical performance
results are analyzed to show that there exists a scaling factor to improve the
tradeoff between delay and utility-optimization. Collectively, the insights in
this work will open the door towards fully automated networks with enhanced
control and flexibility. Numerical results are provided to demonstrate the
effectiveness of the proposed algorithms in terms of the convergence rate,
long-term utility-optimality and delay reduction.
Related papers
- Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
We present AlterNAting COordination and Network-Design Algorithm (Anaconda)
Anaconda is a scalable algorithm that also enjoys near-optimality guarantees.
We demonstrate in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
arXiv Detail & Related papers (2024-09-02T18:11:33Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
We propose and design a hybrid TL-aided approach to provide safe and accelerated convergence in DRL-based O-RAN slicing.
The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios.
arXiv Detail & Related papers (2023-09-13T18:58:34Z) - Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
We introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals (DIAMOND)
A centralized stage computes the multi-flow transmission strategy using a novel design of graph neural network (GNN) reinforcement learning (RL) routing agent.
Then, a distributed stage improves the performance based on a novel design of distributed learning updates.
arXiv Detail & Related papers (2023-03-27T18:49:47Z) - Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning [3.59419219139168]
Open RAN (O-RAN) is a promising paradigm for building an intelligent RAN architecture.
This paper presents a Machine Learning (ML)-based Traffic Steering (TS) scheme to predict network congestion and then steer O-RAN traffic to avoid it and reduce the expected delay.
Our solution is evaluated against traditional reactive TS approaches that are offered as xApps in O-RAN and shows an average of 15.81 percent decrease in queuing delay across all deployed SFCs.
arXiv Detail & Related papers (2023-03-03T14:34:25Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.