論文の概要: Toward Lossless Homomorphic Encryption for Scientific Computation
- arxiv url: http://arxiv.org/abs/2309.07284v1
- Date: Wed, 13 Sep 2023 20:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 04:50:57.981396
- Title: Toward Lossless Homomorphic Encryption for Scientific Computation
- Title(参考訳): 科学計算のためのロスレス同型暗号化に向けて
- Authors: Muhammad Jahanzeb Khan, Bo Fang, Dongfang Zhao,
- Abstract要約: 本研究は、スーパーコンピューティングにおけるCKKSスキームの可能性とそのデータプライバシと計算効率への影響について検討する。
最初の実験では、行列乗法へのCKKSの有望な適用性を明らかにし、ユークリッド距離とほぼゼロに近い平均二乗誤差の差を示す。
第2の実験は、ワイルドファイアデータセットに適用され、精度を著しく損なうことなく、暗号化された機械学習モデルを使用することの可能性を示している。
- 参考スコア(独自算出の注目度): 4.668228426337449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive investigation into encrypted computations using the CKKS (Cheon-Kim-Kim-Song) scheme, with a focus on multi-dimensional vector operations and real-world applications. Through two meticulously designed experiments, the study explores the potential of the CKKS scheme in Super Computing and its implications for data privacy and computational efficiency. The first experiment reveals the promising applicability of CKKS to matrix multiplication, indicating marginal differences in Euclidean distance and near-to-zero mean square error across various matrix sizes. The second experiment, applied to a wildfire dataset, illustrates the feasibility of using encrypted machine learning models without significant loss in accuracy. The insights gleaned from the research set a robust foundation for future innovations, including the potential for GPU acceleration in CKKS computations within TenSEAL. Challenges such as noise budget computation, accuracy loss in multiplication, and the distinct characteristics of arithmetic operations in the context of CKKS are also discussed. The paper serves as a vital step towards understanding the complexities and potentials of encrypted computations, with broad implications for secure data processing and privacy preservation in various scientific domains.
- Abstract(参考訳): 本稿では, CKKS (Cheon-Kim-Kim-Song) 方式を用いて, 多次元ベクトル演算と実世界の応用に焦点をあてて, 暗号化処理の総合的な研究を行う。
この研究は、厳密に設計された2つの実験を通して、スーパーコンピューティングにおけるCKKSスキームの可能性とそのデータプライバシと計算効率への影響について検討した。
最初の実験では、行列乗法へのCKKSの有望な適用性を明らかにし、ユークリッド距離と行列サイズ間の平均二乗誤差の差が示されている。
第2の実験は、ワイルドファイアデータセットに適用され、精度を著しく損なうことなく、暗号化された機械学習モデルを使用することの可能性を示している。
この研究から得られた洞察は、TenSEAL内のCKKS計算におけるGPUアクセラレーションの可能性を含む、将来のイノベーションのための堅牢な基盤となる。
また、ノイズ予算計算、乗算における精度損失、CKKSの文脈における算術演算の特徴等についても論じる。
この論文は、暗号化された計算の複雑さとポテンシャルを理解するための重要なステップであり、様々な科学領域におけるセキュアなデータ処理とプライバシ保護に幅広い意味を持つ。
関連論文リスト
- Secure numerical simulations using fully homomorphic encryption [2.923600136516929]
ホモモルフィック暗号化(英語版) (FHE) は暗号化されたデータに対するセキュアな計算を可能にする。
偏微分方程式のプライバシ保存数値シミュレーションにおけるFHEの適用可能性について検討する。
論文 参考訳(メタデータ) (2024-10-29T07:47:10Z) - Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
暗号化された計算は、多数のアプリケーションドメインにわたる有望な道を開く。
特に、算術的同型暗号化はクラウドベースの計算サービスに自然に適合する。
本稿では,少なくとも2乗問題に対する信頼性の高い暗号化ソリューションにより,暗号化されたシステム識別サービスを提案する。
論文 参考訳(メタデータ) (2024-10-27T20:00:04Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
ホモモルフィック暗号化は、機密データ上のクラウドで除算された計算のプライバシを保護するための有望なソリューションである。
本稿では,クラウドベースの同型計算のクライアント検証を実現するための2つの誤り検出符号化とビルド認証手法を提案する。
我々は,暗号化されたデータ上で実行されたアウトソース計算の検証システムであるVERITASにソリューションを実装した。
論文 参考訳(メタデータ) (2022-07-28T13:22:21Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Efficient CNN Building Blocks for Encrypted Data [6.955451042536852]
ホモモルフィック暗号化(FHE)は機械学習と推論を可能にする有望な技術である。
選択したFHE方式の動作パラメータが機械学習モデルの設計に大きな影響を与えることを示す。
実験により, 上記の設計パラメータの選択は, 精度, セキュリティレベル, 計算時間の間に大きなトレードオフをもたらすことがわかった。
論文 参考訳(メタデータ) (2021-01-30T21:47:23Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Cryptotree: fast and accurate predictions on encrypted structured data [0.0]
ホモモルフィック暗号化(HE)は、入力と出力の両方が暗号化される暗号化データ上での計算を可能にする能力で認められている。
線形回帰と比較して非常に強力な学習手法であるランダムフォレスト(RF)の利用を可能にするフレームワークであるCryptotreeを提案する。
論文 参考訳(メタデータ) (2020-06-15T11:48:01Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。