論文の概要: Encrypted system identification as-a-service via reliable encrypted matrix inversion
- arxiv url: http://arxiv.org/abs/2410.20575v1
- Date: Sun, 27 Oct 2024 20:00:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:06.387758
- Title: Encrypted system identification as-a-service via reliable encrypted matrix inversion
- Title(参考訳): 信頼性のある暗号化行列インバージョンによる暗号化されたシステム識別
- Authors: Janis Adamek, Philipp Binfet, Nils Schlüter, Moritz Schulze Darup,
- Abstract要約: 暗号化された計算は、多数のアプリケーションドメインにわたる有望な道を開く。
特に、算術的同型暗号化はクラウドベースの計算サービスに自然に適合する。
本稿では,少なくとも2乗問題に対する信頼性の高い暗号化ソリューションにより,暗号化されたシステム識別サービスを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Encrypted computation opens up promising avenues across a plethora of application domains, including machine learning, health-care, finance, and control. Arithmetic homomorphic encryption, in particular, is a natural fit for cloud-based computational services. However, computations are essentially limited to polynomial circuits, while comparisons, transcendental functions, and iterative algorithms are notoriously hard to realize. Against this background, the paper presents an encrypted system identification service enabled by a reliable encrypted solution to least squares problems. More precisely, we devise an iterative algorithm for matrix inversion and present reliable initializations as well as certificates for the achieved accuracy without compromising the privacy of provided I/O-data. The effectiveness of the approach is illustrated with three popular identification tasks.
- Abstract(参考訳): 暗号化された計算は、機械学習、ヘルスケア、ファイナンス、コントロールなど、多数のアプリケーションドメインにわたる有望な道を開く。
特に、算術的ホモモルフィック暗号化は、クラウドベースの計算サービスに自然に適合する。
しかし、計算は基本的に多項式回路に限られているが、比較、超越関数、反復アルゴリズムは実現しがたいほど難しい。
そこで本稿では,少なくとも2乗問題に対して,信頼性の高い暗号化ソリューションで実現可能な暗号化システム識別サービスを提案する。
より正確には、提供されたI/Oデータのプライバシーを損なうことなく、行列の逆転と信頼性の高い初期化と達成された精度の証明書の反復アルゴリズムを考案する。
このアプローチの有効性は3つの一般的な識別タスクで示される。
関連論文リスト
- A Note on Efficient Privacy-Preserving Similarity Search for Encrypted Vectors [1.3824176915623292]
従来のベクトル類似性探索手法では、完全同型暗号(FHE)を用いて復号化せずに計算が可能であった。
この研究は、より効率的な代替手段を探究する: プライバシー保護類似性検索に加法的同型暗号(AHE)を使用する。
本稿では,AHE で暗号化された類似性探索のアルゴリズムを提案し,そのエラーの増大とセキュリティへの影響を解析する。
論文 参考訳(メタデータ) (2025-02-20T06:07:04Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
本稿では,機械学習アルゴリズムの新たな2つの応用法を提案する。
これらのアルゴリズムは、監査設定で容易に適用でき、暗号システムの堅牢性を評価することができる。
本稿では,DES,RSA,AES ECBなど,IND-CPAの安全でない暗号化スキームを高精度に識別する。
論文 参考訳(メタデータ) (2025-01-25T04:53:36Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
このフィールドの様々な要求を満たす暗号化アルゴリズム。
暗号化アルゴリズムを分析するための最良のアプローチは、それを壊すための実用的で効率的なテクニックを特定することである。
論文 参考訳(メタデータ) (2024-02-24T10:02:21Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
デジタル世界での信頼度は、暗号アルゴリズムのセキュリティに基づいています。
量子コンピュータの技術進歩の過程で、共通暗号化アルゴリズムの保護機能が脅かされている。
我々の概念は、古典的非対称暗号法の現代複雑性クラスへの変換を記述している。
論文 参考訳(メタデータ) (2023-11-24T21:06:42Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
ホモモルフィック暗号化は、機密データ上のクラウドで除算された計算のプライバシを保護するための有望なソリューションである。
本稿では,クラウドベースの同型計算のクライアント検証を実現するための2つの誤り検出符号化とビルド認証手法を提案する。
我々は,暗号化されたデータ上で実行されたアウトソース計算の検証システムであるVERITASにソリューションを実装した。
論文 参考訳(メタデータ) (2022-07-28T13:22:21Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。