論文の概要: Learning from Auxiliary Sources in Argumentative Revision Classification
- arxiv url: http://arxiv.org/abs/2309.07334v1
- Date: Wed, 13 Sep 2023 22:08:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 16:49:25.092868
- Title: Learning from Auxiliary Sources in Argumentative Revision Classification
- Title(参考訳): 部分修正分類における補助源からの学習
- Authors: Tazin Afrin and Diane Litman
- Abstract要約: 我々は、論証文における望ましい推論リビジョンを分類するモデルを開発する。
我々は,修正データの補助的情報源を活用するために,マルチタスク学習とトランスファー学習という2つのアプローチを探求する。
- 参考スコア(独自算出の注目度): 2.4648259231290868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop models to classify desirable reasoning revisions in argumentative
writing. We explore two approaches -- multi-task learning and transfer learning
-- to take advantage of auxiliary sources of revision data for similar tasks.
Results of intrinsic and extrinsic evaluations show that both approaches can
indeed improve classifier performance over baselines. While multi-task learning
shows that training on different sources of data at the same time may improve
performance, transfer-learning better represents the relationship between the
data.
- Abstract(参考訳): 我々は、論証文における望ましい推論リビジョンを分類するモデルを開発する。
我々は,類似タスクに対する修正データの補助的情報源を活用するために,マルチタスク学習とトランスファー学習の2つのアプローチを検討した。
内在的および外在的評価の結果,両手法がベースラインよりも分類器の性能を向上できることが示唆された。
マルチタスク学習は、異なるデータソースを同時にトレーニングすることでパフォーマンスが向上することを示しているが、転送学習はデータ間の関係をより良く表現する。
関連論文リスト
- An Active Learning Framework for Inclusive Generation by Large Language Models [32.16984263644299]
大規模言語モデル(LLM)は、多様なサブ集団を表すテキストを生成する。
本稿では,知識蒸留により強化されたクラスタリングに基づくアクティブラーニングフレームワークを提案する。
2つの新しいデータセットをモデルトレーニングと組み合わせて構築し、ベースラインモデルよりも2%-10%の性能向上を示した。
論文 参考訳(メタデータ) (2024-10-17T15:09:35Z) - Fast Training Dataset Attribution via In-Context Learning [9.542023122304096]
我々は、インコンテキスト学習とプロンプトエンジニアリングを用いて、インストラクションチューニングされた大規模言語モデル(LLM)におけるトレーニングデータの貢献度を推定する。
本研究では,(1)LLM出力のコンテクストと非コンテクストとの差を測定する類似性に基づくアプローチと,(2)コントリビューションスコアを行列因数分解タスクとして識別する問題をモデル化する混合分布モデルアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-14T20:48:45Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggetsはワンショット学習を使用して、広範なデータセットから高品質な命令データを選択する。
我々は,textscNuggets がキュレートした例の上位1%による命令チューニングが,データセット全体を用いた従来の手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:33:12Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
本稿では、このような補助データアノテーションの新しい代替手段として、入力テキストのペア間のタスク固有の嗜好について検討する。
本稿では、与えられた分類課題と補助的選好の両方を学ぶことの協調効果を享受できる、P2Cと呼ばれる新しいマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T04:04:47Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Adversarial Training Helps Transfer Learning via Better Representations [17.497590668804055]
Transfer Learningは、ソースデータに事前トレーニングされたモデルを活用して、ターゲット設定に効率的に適応することを目的としている。
最近の研究は、情報源データにおける敵対的訓練が、新しいドメインへのモデル転送能力を向上させることを実証的に実証している。
本研究は, 情報源データにおける対角的学習により, より優れた表現が生成されることを示し, この表現を微調整することで, 対象データのより正確な予測が可能であることを示す。
論文 参考訳(メタデータ) (2021-06-18T15:41:07Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
実例に基づく情報ノイズコントラスト推定訓練に意味クラス正の付加を施すことの利点について検討する。
本稿では,インフォネッションNCEの損失を改善するための,自己指導型協調学習手法を提案する。
本研究では,2つの下流タスク(行動認識とビデオ検索)における学習表現の質を評価する。
論文 参考訳(メタデータ) (2020-10-19T17:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。