Nucleus-aware Self-supervised Pretraining Using Unpaired Image-to-image
Translation for Histopathology Images
- URL: http://arxiv.org/abs/2309.07394v1
- Date: Thu, 14 Sep 2023 02:31:18 GMT
- Title: Nucleus-aware Self-supervised Pretraining Using Unpaired Image-to-image
Translation for Histopathology Images
- Authors: Zhiyun Song, Penghui Du, Junpeng Yan, Kailu Li, Jianzhong Shou, Maode
Lai, Yubo Fan, Yan Xu
- Abstract summary: We propose a novel nucleus-aware self-supervised pretraining framework for histopathology images.
The framework aims to capture the nuclear morphology and distribution information through unpaired image-to-image translation.
The experiments on 7 datasets show that the proposed pretraining method outperforms supervised ones on Kather classification, multiple instance learning, and 5 dense-prediction tasks.
- Score: 3.8391355786589805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised pretraining attempts to enhance model performance by
obtaining effective features from unlabeled data, and has demonstrated its
effectiveness in the field of histopathology images. Despite its success, few
works concentrate on the extraction of nucleus-level information, which is
essential for pathologic analysis. In this work, we propose a novel
nucleus-aware self-supervised pretraining framework for histopathology images.
The framework aims to capture the nuclear morphology and distribution
information through unpaired image-to-image translation between histopathology
images and pseudo mask images. The generation process is modulated by both
conditional and stochastic style representations, ensuring the reality and
diversity of the generated histopathology images for pretraining. Further, an
instance segmentation guided strategy is employed to capture instance-level
information. The experiments on 7 datasets show that the proposed pretraining
method outperforms supervised ones on Kather classification, multiple instance
learning, and 5 dense-prediction tasks with the transfer learning protocol, and
yields superior results than other self-supervised approaches on 8
semi-supervised tasks. Our project is publicly available at
https://github.com/zhiyuns/UNITPathSSL.
Related papers
- Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
We present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image.
Our framework consists of a convolutional neural network backbone and a causality-extractor module.
Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information.
arXiv Detail & Related papers (2023-09-19T16:08:33Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions.
arXiv Detail & Related papers (2020-02-27T16:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.