論文の概要: Commercial Anti-Smishing Tools and Their Comparative Effectiveness Against Modern Threats
- arxiv url: http://arxiv.org/abs/2309.07447v1
- Date: Thu, 14 Sep 2023 06:08:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 04:50:57.970591
- Title: Commercial Anti-Smishing Tools and Their Comparative Effectiveness Against Modern Threats
- Title(参考訳): 商業用防汚工具とその近代的脅威に対する比較効果
- Authors: Daniel Timko, Muhammad Lutfor Rahman,
- Abstract要約: 本研究は,新鮮スマイッシング攻撃に対する反スマイッシングツールの有効性を評価するためのテストベッドを開発した。
ほとんどのアンチフィッシングアプリやバルクメッセージングサービスは、キャリアブロック以上のスマイシングメッセージをフィルタリングしなかった。
通信事業者は良質なメッセージをブロックしなかったが、スマイシングメッセージのブロックレートは25~35%に留まった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smishing, also known as SMS phishing, is a type of fraudulent communication in which an attacker disguises SMS communications to deceive a target into providing their sensitive data. Smishing attacks use a variety of tactics; however, they have a similar goal of stealing money or personally identifying information (PII) from a victim. In response to these attacks, a wide variety of anti-smishing tools have been developed to block or filter these communications. Despite this, the number of phishing attacks continue to rise. In this paper, we developed a test bed for measuring the effectiveness of popular anti-smishing tools against fresh smishing attacks. To collect fresh smishing data, we introduce Smishtank.com, a collaborative online resource for reporting and collecting smishing data sets. The SMS messages were validated by a security expert and an in-depth qualitative analysis was performed on the collected messages to provide further insights. To compare tool effectiveness, we experimented with 20 smishing and benign messages across 3 key segments of the SMS messaging delivery ecosystem. Our results revealed significant room for improvement in all 3 areas against our smishing set. Most anti-phishing apps and bulk messaging services didn't filter smishing messages beyond the carrier blocking. The 2 apps that blocked the most smish also blocked 85-100\% of benign messages. Finally, while carriers did not block any benign messages, they were only able to reach a 25-35\% blocking rate for smishing messages. Our work provides insights into the performance of anti-smishing tools and the roles they play in the message blocking process. This paper would enable the research community and industry to be better informed on the current state of anti-smishing technology on the SMS platform.
- Abstract(参考訳): SMSフィッシング(SMS phishing)は、攻撃者がSMS通信を偽装してターゲットを欺いて機密データを提供する不正なコミュニケーションの一種である。
スマイッシング攻撃には様々な戦術があるが、金銭を盗んだり、被害者から個人情報(PII)を個人識別するという同様の目的がある。
これらの攻撃に対して、これらの通信をブロックまたはフィルタリングするために、幅広い種類のアンチ・スミッシング・ツールが開発されている。
しかし、フィッシング攻撃の数は増え続けている。
本稿では,新しいスマイッシング攻撃に対する一般的なアンチ・スマイッシング・ツールの有効性を評価するためのテストベッドを開発した。
Smishtank.comはスマイッシングデータセットの報告と収集のための協調的なオンラインリソースである。
SMSメッセージはセキュリティの専門家によって検証され、収集されたメッセージに対して詳細な質的分析が行われ、さらなる洞察が得られた。
ツールの有効性を比較するために、SMSメッセージング配信エコシステムの3つの重要な部分にわたって、20のスマイシングと良心的なメッセージを実験した。
以上の結果から,スマイッシングセットに対する3つの領域で改善の余地が認められた。
ほとんどのアンチフィッシングアプリやバルクメッセージングサービスは、キャリアブロック以上のスマイシングメッセージをフィルタリングしなかった。
最もスムーズなメッセージをブロックした2つのアプリも85~100\%の良質なメッセージをブロックした。
最後に、キャリアは良質なメッセージをブロックしなかったが、メッセージをスマイシングするために25~35倍のブロックレートにしか到達できなかった。
私たちの作業は、アンチスマイシングツールのパフォーマンスと、メッセージブロッキングプロセスで彼らが果たす役割に関する洞察を提供します。
本稿は、SMSプラットフォームにおけるアンチ・スマイシング技術の現状について、研究コミュニティや業界がより深く知ることを可能にするものである。
関連論文リスト
- Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - SMS Spam Detection and Classification to Combat Abuse in Telephone Networks Using Natural Language Processing [0.0]
この研究は、ユーザのプライバシーとセキュリティに脅威をもたらすSMSスパムの広範にわたる問題に対処する。
本研究では、自然言語処理(NLP)と機械学習モデル、特にスパム検出と分類にBERT(Bidirectional Representations from Transformers)を利用した新しいアプローチを提案する。
評価の結果、Na"ive Bayes + BERT"モデルは97.31%の精度で、テストデータセットでは0.3秒で実行された。
論文 参考訳(メタデータ) (2024-06-04T13:44:36Z) - ExplainableDetector: Exploring Transformer-based Language Modeling Approach for SMS Spam Detection with Explainability Analysis [2.849988619791745]
近年、SMSスパムの数は大幅に増加している。
SMSデータの非構造化フォーマットは、SMSスパム検出に重大な課題をもたらす。
我々は、スパムメッセージ検出の問題を解決するために、最適化および微調整された変換器ベース大規模言語モデル(LLM)を用いる。
論文 参考訳(メタデータ) (2024-05-12T11:42:05Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
何十年にもわたるサイバー犯罪戦術であるフィッシングは、今日のデジタル世界において大きな脅威となっている。
本稿では,15大言語モデル (LLM) がフィッシング手法の検出に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:55:18Z) - Smishing Dataset I: Phishing SMS Dataset from Smishtank.com [0.0]
我々は、smishtank.comからコミュニティソースのスマイシングデータセットを提示する。
本研究の貢献により,このサイトを通じて提出された1090個のスマイッシングサンプルのコーパスを提供する。
論文 参考訳(メタデータ) (2024-02-28T15:56:28Z) - A Quantitative Study of SMS Phishing Detection [0.0]
参加者187名を対象に,スマイシング検出に関するオンライン調査を行った。
我々は16のSMSスクリーンショットを提示し、異なる要因がスマイシング検出における意思決定プロセスに与える影響を評価した。
参加者は偽のメッセージで67.1%、本物のメッセージで43.6%の精度で、偽のメッセージから本物のメッセージを見つけるのが困難であることが判明した。
論文 参考訳(メタデータ) (2023-11-12T17:56:42Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
多くのマルチエージェント強化学習(MARL)では,エージェントが情報を共有し,適切な判断を下す上でコミュニケーションが重要である。
しかし、ノイズや潜在的な攻撃者が存在する現実世界のアプリケーションに訓練された通信エージェントを配置すると、通信ベースのポリシーの安全性は過小評価されている深刻な問題となる。
本研究では,攻撃者が任意の$CfracN-12$エージェントから被害者エージェントへの通信を任意に変更できる,$N$エージェントを備えた環境を検討する。
論文 参考訳(メタデータ) (2022-06-21T07:32:18Z) - Towards Effective and Robust Neural Trojan Defenses via Input Filtering [67.01177442955522]
ディープ・ニューラルネットワークに対するトロイの木馬の攻撃は危険で残酷だ。
過去数年間、Trojan攻撃は単純なトリガーのみを使用し、1つのクラスのみをターゲットとすることから、多くの高度なトリガーを使い、複数のクラスをターゲットにしている。
ほとんどの防衛手法は依然としてトロイの木馬の引き金や標的クラスについて正確な仮定をしているため、現代のトロイの木馬攻撃によって容易に回避できる。
論文 参考訳(メタデータ) (2022-02-24T15:41:37Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
GoogleとAppleは共同で,Bluetooth Low Energyを使用した分散型コントラクトトレースアプリを実装するための公開通知APIを提供している。
実世界のシナリオでは、GAP設計は(i)プロファイリングに脆弱で、(ii)偽の連絡先を生成できるリレーベースのワームホール攻撃に弱いことを実証する。
論文 参考訳(メタデータ) (2020-06-10T16:05:05Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。