論文の概要: Naturalistic Robot Arm Trajectory Generation via Representation Learning
- arxiv url: http://arxiv.org/abs/2309.07550v1
- Date: Thu, 14 Sep 2023 09:26:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 15:39:55.538507
- Title: Naturalistic Robot Arm Trajectory Generation via Representation Learning
- Title(参考訳): 表現学習による自然主義的ロボットアーム軌道生成
- Authors: Jayjun Lee, Adam J. Spiers
- Abstract要約: 家庭環境におけるマニピュレータロボットの統合は、より予測可能な人間のようなロボットの動きの必要性を示唆している。
自然主義的な運動軌跡を生成する方法の1つは、人間のデモ隊の模倣によるものである。
本稿では,自己回帰型ニューラルネットワークを用いた自己指導型模倣学習法について検討する。
- 参考スコア(独自算出の注目度): 4.7682079066346565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of manipulator robots in household environments suggests a
need for more predictable and human-like robot motion. This holds especially
true for wheelchair-mounted assistive robots that can support the independence
of people with paralysis. One method of generating naturalistic motion
trajectories is via the imitation of human demonstrators. This paper explores a
self-supervised imitation learning method using an autoregressive
spatio-temporal graph neural network for an assistive drinking task. We address
learning from diverse human motion trajectory data that were captured via
wearable IMU sensors on a human arm as the action-free task demonstrations.
Observed arm motion data from several participants is used to generate natural
and functional drinking motion trajectories for a UR5e robot arm.
- Abstract(参考訳): 家庭環境におけるマニピュレータロボットの統合は、より予測可能で人間らしいロボットの動きの必要性を示唆している。
これは、麻痺のある人の自立を支援する車椅子搭載の補助ロボットに特に当てはまる。
自然主義的な運動軌道を生成する方法の1つは、人間のデモ隊の模倣である。
本稿では,自己回帰時空間グラフニューラルネットワークを用いた自己指導型模倣学習法について検討する。
我々は、アクションフリータスクのデモンストレーションとして、人間の腕のウェアラブルIMUセンサーを介して捉えた多様な人間の運動軌跡データからの学習に対処する。
複数の参加者から観測された腕の動きデータを用いて、UR5eロボットアームの自然および機能的な飲酒運動軌跡を生成する。
関連論文リスト
- Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction [51.49400490437258]
本研究は,1つの単分子RGB人間の実演から音声による物体操作を模倣する手法を開発した。
まず,モノクロ映像から3次元部分運動を復元する4次元微分可能部品モデル(4D-DPM)を提案する。
この4D再構成を前提として、ロボットは物体の軌道を再現し、両腕の動きを計画し、実証された物体部分の動きを誘導する。
両用するYuMiロボットを用いて,4D-DPMの3D追跡精度を実写3D部分軌跡に基づいて評価し,9つのオブジェクトに対してRSRDの物理的実行性能を評価した。
論文 参考訳(メタデータ) (2024-09-26T17:57:16Z) - Teaching Robots to Build Simulations of Themselves [7.886658271375681]
本稿では,簡単な生ビデオデータのみを用いて,ロボットの形状,運動学,運動制御をモデル化し,予測するための自己教師付き学習フレームワークを提案する。
ロボットは自分の動きを観察することで、自分自身をシミュレートし、様々なタスクのために空間的な動きを予測する能力を学ぶ。
論文 参考訳(メタデータ) (2023-11-20T20:03:34Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Human-Robot Skill Transfer with Enhanced Compliance via Dynamic Movement
Primitives [1.7901837062462316]
本研究では,動的運動プリミティブ(Dynamic Movement Primitives)フレームワークにおいて,人間の実演から動的特徴を抽出し,パラメータを自動チューニングする体系的手法を提案する。
本手法は,LfDとRLの両方に追従するロボット軌道を再現するために,人間の動的特徴を抽出するための実際のロボット装置に実装した。
論文 参考訳(メタデータ) (2023-04-12T08:48:28Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
我々は、人間なら誰でもロボットの手と腕を制御できるシステムを構築します。
ロボットは、人間のオペレーターを1台のRGBカメラで観察し、その動作をリアルタイムで模倣する。
我々はこのデータを利用して、人間の手を理解するシステムを訓練し、人間のビデオストリームをスムーズで、素早く、安全に、意味論的に誘導デモに類似したロボットのハンドアーム軌道に再ターゲティングする。
論文 参考訳(メタデータ) (2022-02-21T18:59:59Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。