Phase shift rule with the optimal parameter selection
- URL: http://arxiv.org/abs/2309.07655v1
- Date: Thu, 14 Sep 2023 12:20:28 GMT
- Title: Phase shift rule with the optimal parameter selection
- Authors: L.A. Markovich, S. Malikis, S. Polla and J.T. Brugu\'es
- Abstract summary: We provide insights about the optimal design of a parameter shift rule, tailored to various sorts of spectral information.
The proposed method lets derivatives be calculated for any system, regardless of how close the eigenvalues are to each other.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The phase shift rules enable the estimation of the derivative of a quantum
state with respect to phase parameters, providing valuable insights into the
behavior and dynamics of quantum systems. This capability is essential in
quantum simulation tasks where understanding the behavior of complex quantum
systems is of interest, such as simulating chemical reactions or condensed
matter systems. However, parameter shift rules are typically designed for
Hamiltonian systems with equidistant eigenvalues. For systems with closely
spaced eigenvalues, effective rules have not been established. We provide
insights about the optimal design of a parameter shift rule, tailored to
various sorts of spectral information that may be available. The proposed
method lets derivatives be calculated for any system, regardless of how close
the eigenvalues are to each other. It also optimizes the number of phase
shifts, which reduces the amount of gate resources needed.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - Physical consequences of Lindbladian invariance transformations [44.99833362998488]
We show that symmetry transformations can be exploited, on their own, to optimize practical physical tasks.
In particular, we show how they can be used to change the measurable values of physical quantities regarding the exchange of energy and/or information with the environment.
arXiv Detail & Related papers (2024-07-02T18:22:11Z) - Reaction dynamics with qubit-efficient momentum-space mapping [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We consider a qubit-efficient mapping on a lattice, which can be efficiently performed using momentum-space basis states.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Decoherence time control by interconnection for finite-level quantum
memory systems [0.7252027234425334]
This paper is concerned with open quantum systems whose dynamic variables have an algebraic structure.
The Hamiltonian and the operators of coupling the system to the external bosonic fields depend linearly on the system variables.
We consider the decoherence time over the energy parameters of the system and obtain a condition under which the zero Hamiltonian provides a suboptimal solution.
arXiv Detail & Related papers (2023-11-04T01:21:55Z) - Decoherence time in quantum harmonic oscillators as quantum memory
systems [0.7252027234425334]
This paper is concerned with open quantum harmonic oscillators (OQHOs) described by linear quantum differential equations.
In a more realistic case of system-environment coupling, we define a memory decoherence horizon as a typical time for a mean-square deviation of the system variables.
We consider the decoherence time over the energy and coupling matrix of the OQHO as a memory system in its storage phase and obtain a condition under which the zero Hamiltonian delivers a suboptimal solution.
arXiv Detail & Related papers (2023-10-26T08:29:42Z) - Variational Embeddings for Many Body Quantum Systems [0.0]
We show how to include quantum devices as high-accuracy solvers on correlated degrees of freedom.
We demonstrate the effectiveness of the protocol on spin chains and small molecules.
arXiv Detail & Related papers (2023-09-15T18:00:05Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Fully differentiable optimization protocols for non-equilibrium steady
states [7.862208848127913]
We present a novel methodology, based on automatic differentiation, capable of differentiating the steady state solution with respect to any parameter of the Liouvillian.
Our approach has a low memory cost, and is agnostic to the exact algorithm for computing the steady state.
We also present a sensitivity analysis of the steady state for energy transfer under natural incoherent light as a function of the incoherent-light pumping rate.
arXiv Detail & Related papers (2021-03-23T15:00:29Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.