Mitigating controller noise in quantum gates using optimal control
theory
- URL: http://arxiv.org/abs/2309.07659v2
- Date: Mon, 4 Dec 2023 10:25:12 GMT
- Title: Mitigating controller noise in quantum gates using optimal control
theory
- Authors: Aviv Aroch, Ronnie Kosloff and Shimshon Kallush
- Abstract summary: Noise is a major obstacle to the realization of quantum technology.
We study the generation of quantum single and two-qubit gates.
We show that optimal control with such noise models generates control solutions to mitigate the loss of gate fidelity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: All quantum systems are subject to noise from the environment or external
controls. This noise is a major obstacle to the realization of quantum
technology. For example, noise limits the fidelity of quantum gates. Employing
optimal control theory, we study the generation of quantum single and two-qubit
gates. Specifically, we explore a Markovian model of phase and amplitude noise,
leading to the degradation of the gate fidelity. We show that optimal control
with such noise models generates control solutions to mitigate the loss of gate
fidelity. The problem is formulated in Liouville space employing an extremely
accurate numerical solver and the Krotov algorithm for solving the optimal
control equations.
Related papers
- Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
We propose a promising average-fidelity-based machine-learning-inspired method to optimize the control parameters.
We implement a single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering.
We demonstrate that the neural network possesses the ability to expand the model space.
arXiv Detail & Related papers (2023-09-28T14:36:26Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Universal robust quantum gates by geometric correspondence of noisy
quantum dynamics [0.0]
We develop a theory to capture quantum dynamics due to various noises graphically, obtaining the quantum erroneous evolution diagrams (QEED)
We then develop a protocol to engineer a universal set of single- and two-qubit robust gates that correct the generic errors.
Our approach offers new insights into the geometric aspects of noisy quantum dynamics and several advantages over existing methods.
arXiv Detail & Related papers (2022-10-26T07:21:02Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Dynamically corrected gates from geometric space curves [55.41644538483948]
We review a technique for designing control fields that dynamically correct errors while performing operations using a close relationship between quantum evolution and geometric space curves.
This approach provides access to the global solution space of control fields that accomplish a given task, facilitating the design of experimentally feasible gate operations for a wide variety of applications.
arXiv Detail & Related papers (2021-03-30T01:12:36Z) - Information Theoretical Limits for Quantum Optimal Control Solutions:
Error Scaling of Noisy Channels [4.724825031148412]
We provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise.
We numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
arXiv Detail & Related papers (2020-06-29T15:22:09Z) - High-fidelity software-defined quantum logic on a superconducting qudit [23.29920768537117]
Modern solid-state quantum processors approach quantum computation with a set of discrete qubit operations (gates)
In principle, this approach is highly flexible, allowing full control over the qubits' Hilbert space without necessitating the development of specific control protocols for each application.
Current error rates on quantum hardware place harsh limits on the number of primitive gates that can bed together (with compounding error rates) and remain viable.
Here, we report our efforts at implementing a software-defined $0leftarrow2$ SWAP gate that does not rely on a primitive gate set and achieves an average gate fidelity of $99.4
arXiv Detail & Related papers (2020-05-27T05:12:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.