High-fidelity software-defined quantum logic on a superconducting qudit
- URL: http://arxiv.org/abs/2005.13165v3
- Date: Mon, 19 Oct 2020 17:14:45 GMT
- Title: High-fidelity software-defined quantum logic on a superconducting qudit
- Authors: Xian Wu, S.L. Tomarken, N. Anders Petersson, L.A. Martinez, Yaniv J.
Rosen, Jonathan L DuBois
- Abstract summary: Modern solid-state quantum processors approach quantum computation with a set of discrete qubit operations (gates)
In principle, this approach is highly flexible, allowing full control over the qubits' Hilbert space without necessitating the development of specific control protocols for each application.
Current error rates on quantum hardware place harsh limits on the number of primitive gates that can bed together (with compounding error rates) and remain viable.
Here, we report our efforts at implementing a software-defined $0leftarrow2$ SWAP gate that does not rely on a primitive gate set and achieves an average gate fidelity of $99.4
- Score: 23.29920768537117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nearly all modern solid-state quantum processors approach quantum computation
with a set of discrete qubit operations (gates) that can achieve universal
quantum control with only a handful of primitive gates. In principle, this
approach is highly flexible, allowing full control over the qubits' Hilbert
space without necessitating the development of specific control protocols for
each application. However, current error rates on quantum hardware place harsh
limits on the number of primitive gates that can be concatenated together (with
compounding error rates) and remain viable. Here, we report our efforts at
implementing a software-defined $0\leftrightarrow2$ SWAP gate that does not
rely on a primitive gate set and achieves an average gate fidelity of $99.4\%$.
Our work represents an alternative, fully generalizable route towards achieving
nontrivial quantum control through the use of optimal control techniques. We
describe our procedure for computing optimal control solutions, calibrating the
quantum and classical hardware chain, and characterizing the fidelity of the
optimal control gate.
Related papers
- Universal Quantum Gate Set for Gottesman-Kitaev-Preskill Logical Qubits [0.0]
We report on the experimental demonstration of a universal gate set for the GKP code.
This includes single-qubit gates and -- for the first time -- a two-qubit entangling gate between logical code words.
We demonstrate single-qubit gates with a logical process fidelity as high as 0.960 and a two-qubit entangling gate with a logical process fidelity of 0.680.
arXiv Detail & Related papers (2024-09-09T09:23:36Z) - Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
We propose a promising average-fidelity-based machine-learning-inspired method to optimize the control parameters.
We implement a single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering.
We demonstrate that the neural network possesses the ability to expand the model space.
arXiv Detail & Related papers (2023-09-28T14:36:26Z) - Mitigating controller noise in quantum gates using optimal control
theory [0.0]
Noise is a major obstacle to the realization of quantum technology.
We study the generation of quantum single and two-qubit gates.
We show that optimal control with such noise models generates control solutions to mitigate the loss of gate fidelity.
arXiv Detail & Related papers (2023-09-14T12:23:53Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Optimal Control without Arbitrary Waveform Generators [1.572727650614088]
We show that arbitrary control of a quantum system can be achieved by simply turning on and off the control fields in a proper sequence.
We demonstrate the flexibility and robustness of the resulting control protocol, and apply it to superconducting quantum circuits.
arXiv Detail & Related papers (2022-09-20T17:27:27Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Simple implementation of high fidelity controlled-$i$SWAP gates and
quantum circuit exponentiation of non-Hermitian gates [0.0]
The $i$swap gate is an entangling swapping gate where the qubits obtain a phase of $i$ if the state of the qubits is swapped.
We present a simple implementation of the controlled-$i$swap gate.
arXiv Detail & Related papers (2020-02-26T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.