Neural-PDE: A RNN based neural network for solving time dependent PDEs
- URL: http://arxiv.org/abs/2009.03892v3
- Date: Sun, 9 Jan 2022 04:09:44 GMT
- Title: Neural-PDE: A RNN based neural network for solving time dependent PDEs
- Authors: Yihao Hu, Tong Zhao, Shixin Xu, Zhiliang Xu, Lizhen Lin
- Abstract summary: Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering.
We propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system.
In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions.
- Score: 6.560798708375526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) play a crucial role in studying a vast
number of problems in science and engineering. Numerically solving nonlinear
and/or high-dimensional PDEs is often a challenging task. Inspired by the
traditional finite difference and finite elements methods and emerging
advancements in machine learning, we propose a sequence deep learning framework
called Neural-PDE, which allows to automatically learn governing rules of any
time-dependent PDE system from existing data by using a bidirectional LSTM
encoder, and predict the next n time steps data. One critical feature of our
proposed framework is that the Neural-PDE is able to simultaneously learn and
simulate the multiscale variables.We test the Neural-PDE by a range of examples
from one-dimensional PDEs to a high-dimensional and nonlinear complex fluids
model. The results show that the Neural-PDE is capable of learning the initial
conditions, boundary conditions and differential operators without the
knowledge of the specific form of a PDE system.In our experiments the
Neural-PDE can efficiently extract the dynamics within 20 epochs training, and
produces accurate predictions. Furthermore, unlike the traditional machine
learning approaches in learning PDE such as CNN and MLP which require vast
parameters for model precision, Neural-PDE shares parameters across all time
steps, thus considerably reduces the computational complexity and leads to a
fast learning algorithm.
Related papers
- Neural Fractional Differential Equations [2.812395851874055]
Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering.
We propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data.
arXiv Detail & Related papers (2024-03-05T07:45:29Z) - Latent Neural PDE Solver: a reduced-order modelling framework for
partial differential equations [6.173339150997772]
We propose to learn the dynamics of the system in the latent space with much coarser discretizations.
A non-linear autoencoder is first trained to project the full-order representation of the system onto the mesh-reduced space.
We showcase that it has competitive accuracy and efficiency compared to the neural PDE solver that operates on full-order space.
arXiv Detail & Related papers (2024-02-27T19:36:27Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs)
The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters.
We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(103) and 1% relative error to the ground truth values.
arXiv Detail & Related papers (2023-11-28T01:35:06Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
We propose an unsupervised machine learning algorithm based on the Legendre-Galerkin neural network to find an accurate approximation to the solution of different types of PDEs.
The proposed neural network is applied to the general 1D and 2D PDEs as well as singularly perturbed PDEs that possess boundary layer behavior.
arXiv Detail & Related papers (2022-07-21T00:47:47Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
We propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems.
We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics.
Our model can be applied to any data without requiring any prior knowledge about the governing PDE.
arXiv Detail & Related papers (2021-11-15T10:59:52Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.