論文の概要: VAPOR: Legged Robot Navigation in Outdoor Vegetation Using Offline
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2309.07832v2
- Date: Tue, 19 Sep 2023 21:22:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 18:24:26.974002
- Title: VAPOR: Legged Robot Navigation in Outdoor Vegetation Using Offline
Reinforcement Learning
- Title(参考訳): VAPOR:オフライン強化学習を用いた屋外植生におけるロボットナビゲーション
- Authors: Kasun Weerakoon, Adarsh Jagan Sathyamoorthy, Mohamed Elnoor, Dinesh
Manocha
- Abstract要約: 本研究では,非構造で密集した屋外環境における自律脚ロボットナビゲーションのための新しい手法であるVAPORを提案する。
本手法は,アクター・クリティカル・ネットワークと実際の屋外植生で収集された任意のデータを用いて,新しいRLポリシーを訓練する。
VAPORの動作は成功率を最大40%向上させ、平均電流消費量を最大2.9%削減し、正規化軌道長を最大11.2%削減する。
- 参考スコア(独自算出の注目度): 53.13393315664145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present VAPOR, a novel method for autonomous legged robot navigation in
unstructured, densely vegetated outdoor environments using offline
Reinforcement Learning (RL). Our method trains a novel RL policy using an
actor-critic network and arbitrary data collected in real outdoor vegetation.
Our policy uses height and intensity-based cost maps derived from 3D LiDAR
point clouds, a goal cost map, and processed proprioception data as state
inputs, and learns the physical and geometric properties of the surrounding
obstacles such as height, density, and solidity/stiffness. The fully-trained
policy's critic network is then used to evaluate the quality of dynamically
feasible velocities generated from a novel context-aware planner. Our planner
adapts the robot's velocity space based on the presence of entrapment inducing
vegetation, and narrow passages in dense environments. We demonstrate our
method's capabilities on a Spot robot in complex real-world outdoor scenes,
including dense vegetation. We observe that VAPOR's actions improve success
rates by up to 40%, decrease the average current consumption by up to 2.9%, and
decrease the normalized trajectory length by up to 11.2% compared to existing
end-to-end offline RL and other outdoor navigation methods.
- Abstract(参考訳): オフライン強化学習(RL)を用いた非構造・密植屋外環境における自律脚ロボットナビゲーションの新しい手法であるVAPORを提案する。
本手法は,アクター・クリティカル・ネットワークと実際の屋外植生で収集された任意のデータを用いて,新しいRLポリシーを訓練する。
本ポリシーでは,3次元LiDAR点雲,目標コストマップ,処理されたプロプレセプションデータを状態入力として利用し,高さ・密度・剛性・剛性などの周囲障害物の物理的・幾何学的性質を学習する。
フルトレーニングされたポリシーの批判ネットワークは、新しいコンテキスト対応プランナから生成された動的に実現可能な速度の品質を評価するために使用される。
我々のプランナーは、密集環境における植生の侵入や狭い通路の存在に基づいて、ロボットの速度空間に適応する。
本手法は,密集した植生を含む複雑な実世界の屋外シーンにおけるスポットロボットの能力を示す。
VAPORの動作は成功率を最大40%向上し、平均電流消費量を最大2.9%削減し、従来のオフラインRLや他の屋外ナビゲーション手法と比較して正常化軌道長を最大11.2%削減する。
関連論文リスト
- EnCoMP: Enhanced Covert Maneuver Planning with Adaptive Threat-Aware Visibility Estimation using Offline Reinforcement Learning [0.6597195879147555]
本研究では,多様な屋外環境下でロボットが隠ぺいにナビゲートできるように改良されたナビゲーションフレームワークであるEnCoMPを提案する。
我々は、LiDAR点雲からカバーマップ、潜在的な脅威マップ、高さマップ、ゴールマップを含む高忠実度マルチマップ表現を生成する。
物理的ジャカルロボット上での手法の能力を実証し,多様な地形で実験を行った。
論文 参考訳(メタデータ) (2024-03-29T07:03:10Z) - Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning [22.48658555542736]
ロボットデータ取得における重要な課題は、当初未知の環境を抜けて観測を収集する計画経路である。
そこで本研究では,未知の3D環境において,ロボット経路を適応的に計画し,対象をマップする深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-02-07T14:24:41Z) - CoverNav: Cover Following Navigation Planning in Unstructured Outdoor
Environment with Deep Reinforcement Learning [1.0499611180329804]
オフロード地形やジャングル環境における隠蔽およびナビゲート可能な軌道を識別するための,Deep Reinforcement Learning に基づく新しいアルゴリズム CoverNav を提案する。
CoverNavは、ロボットエージェントが報酬関数を使って低い標高の地形を学習するのを助ける。
また,カバーナブの最大目標距離12mと,カバーオブジェクトの有無による異なる標高シナリオにおける成功率について検討した。
論文 参考訳(メタデータ) (2023-08-12T15:19:49Z) - AZTR: Aerial Video Action Recognition with Auto Zoom and Temporal
Reasoning [63.628195002143734]
本稿では,空中映像の行動認識のための新しい手法を提案する。
提案手法は,UAVを用いて撮影したビデオに対して設計されており,エッジやモバイルデバイス上でも動作可能である。
我々は、カスタマイズされたオートズームを使用して、人間のターゲットを自動的に識別し、適切にスケールする学習ベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-02T21:24:19Z) - Offline Reinforcement Learning for Visual Navigation [66.88830049694457]
ReViNDは、ロボットナビゲーションのための最初のオフラインRLシステムで、これまで収集されたデータを利用して、現実世界でユーザーが指定した報酬関数を最適化する。
ReViNDは、このデータセットからのオフライントレーニングのみを使用して、遠方の目標にナビゲートできることを示し、ユーザ指定の報酬関数に基づいて、質的に異なる振る舞いを示す。
論文 参考訳(メタデータ) (2022-12-16T02:23:50Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - WayFAST: Traversability Predictive Navigation for Field Robots [5.914664791853234]
本稿では,車輪付き移動ロボットの走行経路を予測するための自己教師型アプローチを提案する。
キーとなるインスピレーションは、キノダイナミックモデルを用いてローリングロボットのトラクションを推定できることです。
オンライントラクション推定に基づくトレーニングパイプラインは,他の手法よりもデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-03-22T22:02:03Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z) - On Reward Shaping for Mobile Robot Navigation: A Reinforcement Learning
and SLAM Based Approach [7.488722678999039]
本研究では,未知環境下を走行する移動ロボットを対象とした,深層強化学習(DRL)に基づくマップレス経路計画アルゴリズムを提案する。
プランナーは、トレーニング環境の地図のオンライン知識に基づいて、報酬関数を用いて訓練される。
シミュレーション環境で訓練されたポリシーを直接、実際のロボットに転送し、成功させることができる。
論文 参考訳(メタデータ) (2020-02-10T22:00:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。