Uncertainty quantification for learned ISTA
- URL: http://arxiv.org/abs/2309.07982v1
- Date: Thu, 14 Sep 2023 18:39:07 GMT
- Title: Uncertainty quantification for learned ISTA
- Authors: Frederik Hoppe, Claudio Mayrink Verdun, Felix Krahmer, Hannah Laus,
Holger Rauhut
- Abstract summary: Algorithm unrolling schemes stand out among these model-based learning techniques.
They lack certainty estimates and a theory for uncertainty quantification is still elusive.
This work proposes a rigorous way to obtain confidence intervals for the LISTA estimator.
- Score: 5.706217259840463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based deep learning solutions to inverse problems have attracted
increasing attention in recent years as they bridge state-of-the-art numerical
performance with interpretability. In addition, the incorporated prior domain
knowledge can make the training more efficient as the smaller number of
parameters allows the training step to be executed with smaller datasets.
Algorithm unrolling schemes stand out among these model-based learning
techniques. Despite their rapid advancement and their close connection to
traditional high-dimensional statistical methods, they lack certainty estimates
and a theory for uncertainty quantification is still elusive. This work
provides a step towards closing this gap proposing a rigorous way to obtain
confidence intervals for the LISTA estimator.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - The Stochastic Proximal Distance Algorithm [5.3315823983402755]
We propose and analyze a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter.
We extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates.
We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.
arXiv Detail & Related papers (2022-10-21T22:07:28Z) - Theoretical bounds on estimation error for meta-learning [29.288915378272375]
We provide novel information-theoretic lower-bounds on minimax rates of convergence for algorithms trained on data from multiple sources and tested on novel data.
Our bounds depend intuitively on the information shared between sources of data, and characterize the difficulty of learning in this setting for arbitrary algorithms.
arXiv Detail & Related papers (2020-10-14T14:57:21Z) - Multi-Loss Sub-Ensembles for Accurate Classification with Uncertainty
Estimation [1.2891210250935146]
We propose an efficient method for uncertainty estimation in deep neural networks (DNNs) achieving high accuracy.
We keep our inference time relatively low by leveraging the advantage proposed by the Deep-Sub-Ensembles method.
Our results show improved accuracy on the classification task and competitive results on several uncertainty measures.
arXiv Detail & Related papers (2020-10-05T10:59:11Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Real-Time Uncertainty Estimation in Computer Vision via
Uncertainty-Aware Distribution Distillation [18.712408359052667]
We propose a simple, easy-to-optimize distillation method for learning the conditional predictive distribution of a pre-trained dropout model.
We empirically test the effectiveness of the proposed method on both semantic segmentation and depth estimation tasks.
arXiv Detail & Related papers (2020-07-31T05:40:39Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - BERT Loses Patience: Fast and Robust Inference with Early Exit [91.26199404912019]
We propose Patience-based Early Exit as a plug-and-play technique to improve the efficiency and robustness of a pretrained language model.
Our approach improves inference efficiency as it allows the model to make a prediction with fewer layers.
arXiv Detail & Related papers (2020-06-07T13:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.