Real-Time Uncertainty Estimation in Computer Vision via
Uncertainty-Aware Distribution Distillation
- URL: http://arxiv.org/abs/2007.15857v2
- Date: Fri, 6 Nov 2020 03:52:54 GMT
- Title: Real-Time Uncertainty Estimation in Computer Vision via
Uncertainty-Aware Distribution Distillation
- Authors: Yichen Shen, Zhilu Zhang, Mert R. Sabuncu, Lin Sun
- Abstract summary: We propose a simple, easy-to-optimize distillation method for learning the conditional predictive distribution of a pre-trained dropout model.
We empirically test the effectiveness of the proposed method on both semantic segmentation and depth estimation tasks.
- Score: 18.712408359052667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibrated estimates of uncertainty are critical for many real-world computer
vision applications of deep learning. While there are several widely-used
uncertainty estimation methods, dropout inference stands out for its simplicity
and efficacy. This technique, however, requires multiple forward passes through
the network during inference and therefore can be too resource-intensive to be
deployed in real-time applications. We propose a simple, easy-to-optimize
distillation method for learning the conditional predictive distribution of a
pre-trained dropout model for fast, sample-free uncertainty estimation in
computer vision tasks. We empirically test the effectiveness of the proposed
method on both semantic segmentation and depth estimation tasks and demonstrate
our method can significantly reduce the inference time, enabling real-time
uncertainty quantification, while achieving improved quality of both the
uncertainty estimates and predictive performance over the regular dropout
model.
Related papers
- Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning [0.36832029288386137]
We provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm.
The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process.
arXiv Detail & Related papers (2024-06-20T05:51:37Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
We propose an efficient framework for predictive uncertainty estimation in NNs deployed on embedded edge systems.
The framework is built from the ground up to provide predictive uncertainty based only on one forward pass.
Our approach not only obtains robust and accurate uncertainty estimations but also outperforms state-of-the-art methods in terms of systems performance.
arXiv Detail & Related papers (2021-02-11T11:44:32Z) - Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs [29.84563789289183]
Uncertainty quantification is crucial for building reliable and trustable machine learning systems.
We propose to estimate uncertainty in recurrent neural networks (RNNs) via discrete state transitions over recurrent timesteps.
The uncertainty of the model can be quantified by running a prediction several times, each time sampling from the recurrent state transition distribution.
arXiv Detail & Related papers (2020-11-24T10:35:28Z) - Multi-Loss Sub-Ensembles for Accurate Classification with Uncertainty
Estimation [1.2891210250935146]
We propose an efficient method for uncertainty estimation in deep neural networks (DNNs) achieving high accuracy.
We keep our inference time relatively low by leveraging the advantage proposed by the Deep-Sub-Ensembles method.
Our results show improved accuracy on the classification task and competitive results on several uncertainty measures.
arXiv Detail & Related papers (2020-10-05T10:59:11Z) - On the uncertainty of self-supervised monocular depth estimation [52.13311094743952]
Self-supervised paradigms for monocular depth estimation are very appealing since they do not require ground truth annotations at all.
We explore for the first time how to estimate the uncertainty for this task and how this affects depth accuracy.
We propose a novel peculiar technique specifically designed for self-supervised approaches.
arXiv Detail & Related papers (2020-05-13T09:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.