論文の概要: Research on Joint Representation Learning Methods for Entity
Neighborhood Information and Description Information
- arxiv url: http://arxiv.org/abs/2309.08100v1
- Date: Fri, 15 Sep 2023 01:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 16:25:52.980437
- Title: Research on Joint Representation Learning Methods for Entity
Neighborhood Information and Description Information
- Title(参考訳): エンティティ近隣情報と記述情報のための共同表現学習法に関する研究
- Authors: Le Xiao and Xin Shan and Yuhua Wang and Miaolei Deng
- Abstract要約: エンティティ・エリア・インフォメーションと記述情報を組み合わせた共同学習モデルを提案する。
実験結果から,提案したモデルが,プログラム設計コースの知識グラフデータセット上で良好な性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 2.206623168926072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the issue of poor embedding performance in the knowledge graph of
a programming design course, a joint represen-tation learning model that
combines entity neighborhood infor-mation and description information is
proposed. Firstly, a graph at-tention network is employed to obtain the
features of entity neigh-boring nodes, incorporating relationship features to
enrich the structural information. Next, the BERT-WWM model is utilized in
conjunction with attention mechanisms to obtain the representation of entity
description information. Finally, the final entity vector representation is
obtained by combining the vector representations of entity neighborhood
information and description information. Experimental results demonstrate that
the proposed model achieves favorable performance on the knowledge graph
dataset of the pro-gramming design course, outperforming other baseline models.
- Abstract(参考訳): プログラミングデザインコースの知識グラフに組込み性能が劣る問題に対処するために,エンティティ・エリア・インフォメーションと記述情報を組み合わせた共同再帰的学習モデルを提案する。
まず、構造情報を充実させるために関係性を組み込んだ、エンティティニーボーリングノードの特徴を得るために、グラフアテンションネットワークを用いる。
次に、BERT-WWMモデルとアテンション機構を併用してエンティティ記述情報の表現を得る。
最後に、エンティティ近傍情報のベクトル表現と記述情報の組合せにより、最終的なエンティティベクトル表現を得る。
実験の結果,提案モデルがプログラミング設計コースの知識グラフデータセットにおいて,他のベースラインモデルよりも優れた性能が得られることがわかった。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
我々は、異なるエンティティと関係型を区別することを学ぶ新しいエンティティ/リレーション埋め込み層を導入する。
知識グラフから抽出したトリプルを用いて、この追加埋め込み層を用いて言語モデルをさらに事前学習し、続いて標準微調整フェーズにより、ベンチマークデータセット上のリンク予測タスクに対して、新しい最先端のパフォーマンスが設定されることを示す。
論文 参考訳(メタデータ) (2022-11-04T20:38:12Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - Jointly Learning Knowledge Embedding and Neighborhood Consensus with
Relational Knowledge Distillation for Entity Alignment [9.701081498310165]
エンティティアライメントは、異なる知識グラフから異種知識を統合することを目的としています。
近年の研究では、知識グラフを初めて学習し、エンティティアライメントを実行することで、埋め込みに基づく手法が採用されている。
本稿では,知識蒸留機能を備えたグラフ畳み込みネットワーク(GCN)モデルを提案する。
論文 参考訳(メタデータ) (2022-01-25T02:47:14Z) - End-to-End Hierarchical Relation Extraction for Generic Form
Understanding [0.6299766708197884]
本稿では,エンティティ検出とリンク予測を併用する新しいディープニューラルネットワークを提案する。
本モデルでは,複数段階の意図的U-Netアーキテクチャを拡張し,リンク予測のための部分強度場と部分連想場を拡張した。
本稿では,ノイズの多い文書データセットの形式理解におけるモデルの有効性を示す。
論文 参考訳(メタデータ) (2021-06-02T06:51:35Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
リレーショナル・テンポラル関係を明示的にモデル化するメッセージパッシンググラフニューラルネットワークを提案する。
本手法は,シーン内の関連エンティティ間の関係をより効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2021-03-29T14:37:35Z) - DisenE: Disentangling Knowledge Graph Embeddings [33.169388832519]
DisenEは、非絡み合いの知識グラフの埋め込みを学習するためのエンドツーエンドフレームワークである。
我々は,モデルが与えられた関係に応じて,エンティティ埋め込みの関連コンポーネントに明示的に焦点を絞ることができるように,注意に基づく機構を導入する。
論文 参考訳(メタデータ) (2020-10-28T03:45:19Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Bidirectional Graph Reasoning Network for Panoptic Segmentation [126.06251745669107]
本稿では,BGRNet(Bidirectional Graph Reasoning Network)を導入し,前景物と背景物間のモジュラー内およびモジュラー間関係について検討する。
BGRNetはまず、インスタンスとセマンティックセグメンテーションの両方でイメージ固有のグラフを構築し、提案レベルとクラスレベルで柔軟な推論を可能にする。
論文 参考訳(メタデータ) (2020-04-14T02:32:10Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。