論文の概要: Segment Anything Model for Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2309.08434v2
- Date: Wed, 11 Sep 2024 12:27:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 22:17:57.294121
- Title: Segment Anything Model for Brain Tumor Segmentation
- Title(参考訳): 脳腫瘍の分節化に関するセグメンテーションモデル
- Authors: Peng Zhang, Yaping Wang,
- Abstract要約: グリオーマ(Glioma)は、個体に重大な健康リスクをもたらす脳腫瘍である。
Meta AIがリリースしたSegment Anything Modelは、画像セグメンテーションの基本モデルであり、ゼロサンプルの一般化機能に優れています。
そこで本研究では, SAMの脳腫瘍セグメンテーションにおける性能について検討し, モデル微調整がなければ, SAMと現状SOTAモデルとの間には相違があることを見出した。
- 参考スコア(独自算出の注目度): 3.675657219384998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glioma is a prevalent brain tumor that poses a significant health risk to individuals. Accurate segmentation of brain tumor is essential for clinical diagnosis and treatment. The Segment Anything Model(SAM), released by Meta AI, is a fundamental model in image segmentation and has excellent zero-sample generalization capabilities. Thus, it is interesting to apply SAM to the task of brain tumor segmentation. In this study, we evaluated the performance of SAM on brain tumor segmentation and found that without any model fine-tuning, there is still a gap between SAM and the current state-of-the-art(SOTA) model.
- Abstract(参考訳): グリオーマ(Glioma)は、個体に重大な健康リスクをもたらす脳腫瘍である。
脳腫瘍の正確なセグメンテーションは臨床診断と治療に不可欠である。
Meta AIがリリースしたSegment Anything Model(SAM)は、画像セグメンテーションの基本モデルであり、ゼロサンプルの一般化機能に優れています。
したがって、SAMを脳腫瘍セグメンテーションの課題に適用することは興味深い。
そこで本研究では, SAMの脳腫瘍セグメンテーションにおける性能について検討し, モデル微調整がなければ, SAMと現状SOTAモデルとの間には相違があることを見出した。
関連論文リスト
- Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
本論文は, 臨界観察を生かして, 一般化可能な腫瘍合成に向けて進歩的な一歩を踏み出した。
私たちは、Diffusion Modelsのような生成AIモデルが、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を作成できることを確認した。
論文 参考訳(メタデータ) (2024-02-29T18:57:39Z) - Segment anything model for head and neck tumor segmentation with CT, PET
and MRI multi-modality images [0.04924932828166548]
本研究は,最小限の人的プロンプトを必要とすると認識されるセグメンション・アプライシング・モデル(SAM)について検討する。
具体的には,大規模な医用画像を用いたSAMのバージョンであるMedSAMについて検討する。
本研究は,超微調整SAMのセグメンテーション精度が向上し,既に有効なゼロショット結果が得られたことを実証する。
論文 参考訳(メタデータ) (2024-02-27T12:26:45Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
この分類モデルはEfficientNetB1アーキテクチャに基づいており、画像は髄膜腫、グリオーマ、下垂体腺腫、腫瘍の4つのクラスに分類するよう訓練されている。
セグメンテーションモデルはU-Netアーキテクチャに基づいており、MRI画像から腫瘍を正確にセグメンテーションするように訓練されている。
論文 参考訳(メタデータ) (2023-04-20T01:32:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Dilated Inception U-Net (DIU-Net) for Brain Tumor Segmentation [0.9176056742068814]
U-Netに基づく新しいエンド・ツー・エンド脳腫瘍セグメンテーションアーキテクチャを提案する。
提案モデルでは, 腫瘍コアと全腫瘍セグメンテーションについて, 最先端のU-Netモデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2021-08-15T16:04:09Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
本稿では,MRI画像を用いて脳腫瘍領域の分類と分類を行うマルチタスク注意誘導エンコーダネットワーク(MAG-Net)を提案する。
このモデルは既存の最先端モデルと比較して有望な結果を得た。
論文 参考訳(メタデータ) (2021-07-26T16:51:00Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。