On some limitations of data-driven weather forecasting models
- URL: http://arxiv.org/abs/2309.08473v2
- Date: Fri, 3 Nov 2023 13:50:19 GMT
- Title: On some limitations of data-driven weather forecasting models
- Authors: Massimo Bonavita
- Abstract summary: We examine some aspects of the forecasts produced by an exemplar of the current generation of ML models, Pangu-Weather.
The main conclusion is that Pangu-Weather forecasts, and possibly those of similar ML models, do not have the fidelity and physical consistency of physics-based models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As in many other areas of engineering and applied science, Machine Learning
(ML) is having a profound impact in the domain of Weather and Climate
Prediction. A very recent development in this area has been the emergence of
fully data-driven ML prediction models which routinely claim superior
performance to that of traditional physics-based models. In this work, we
examine some aspects of the forecasts produced by an exemplar of the current
generation of ML models, Pangu-Weather, with a focus on the fidelity and
physical consistency of those forecasts and how these characteristics relate to
perceived forecast performance. The main conclusion is that Pangu-Weather
forecasts, and possibly those of similar ML models, do not have the fidelity
and physical consistency of physics-based models and their advantage in
accuracy on traditional deterministic metrics of forecast skill can be at least
partly attributed to these peculiarities. Balancing forecast skill and physical
consistency of ML-driven predictions will be an important consideration for
future ML models. However, and similarly to other modern post-processing
technologies, the current ML models appear to be already able to add value to
standard NWP output for specific forecast applications and combined with their
extremely low computational cost during deployment, are set to provide an
additional, useful source of forecast information. .
Related papers
- Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score.
We propose a novel framework for evaluating models from multiple perspectives.
We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques.
arXiv Detail & Related papers (2024-06-24T12:28:22Z) - Can Language Models Use Forecasting Strategies? [14.332379032371612]
We describe experiments using a novel dataset of real world events and associated human predictions.
We find that models still struggle to make accurate predictions about the future.
arXiv Detail & Related papers (2024-06-06T19:01:42Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
We introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days.
FuXi-ENS runs at a significantly increased spatial resolution of 0.25textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables.
Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations.
arXiv Detail & Related papers (2024-05-09T17:15:09Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning and Dynamical Models for Sub-seasonal Climate Forecasting:
Comparison and Collaboration [20.52175766498954]
Sub-seasonal climate forecasting (SSF) is the prediction of key climate variables such as temperature and precipitation on the 2-week to 2-month time horizon.
Recent studies have shown the potential of machine learning (ML) models to advance SSF.
arXiv Detail & Related papers (2021-09-29T06:34:34Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.