FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting
- URL: http://arxiv.org/abs/2405.05925v3
- Date: Fri, 9 Aug 2024 05:14:05 GMT
- Title: FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting
- Authors: Xiaohui Zhong, Lei Chen, Hao Li, Jun Liu, Xu Fan, Jie Feng, Kan Dai, Jing-Jia Luo, Jie Wu, Bo Lu,
- Abstract summary: We introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days.
FuXi-ENS runs at a significantly increased spatial resolution of 0.25textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables.
Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations.
- Score: 16.562512279873577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensemble forecasting is crucial for improving weather predictions, especially for forecasts of extreme events. Constructing an ensemble prediction system (EPS) based on conventional NWP models is highly computationally expensive. ML models have emerged as valuable tools for deterministic weather forecasts, providing forecasts with significantly reduced computational requirements and even surpassing the forecast performance of traditional NWP models. However, challenges arise when applying ML models to ensemble forecasting. Recent ML models, such as GenCast and SEEDS model, rely on the ERA5 EDA or operational NWP ensemble members for forecast generation. Their spatial resolution is also considered too coarse for many applications. To overcome these limitations, we introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days. This model runs at a significantly increased spatial resolution of 0.25\textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables. By leveraging the inherent probabilistic nature of Variational AutoEncoder (VAE), FuXi-ENS optimizes a loss function that combines the CRPS and the KL divergence between the predicted and target distribution, facilitating the incorporation of flow-dependent perturbations in both initial conditions and forecast. This innovative approach makes FuXi-ENS an advancement over the traditional ones that use L1 loss combined with the KL loss in standard VAE models for ensemble weather forecasting. Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations. This achievement underscores the potential of the FuXi-ENS model to enhance ensemble weather forecasts, offering a promising direction for further development in this field.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Prithvi WxC: Foundation Model for Weather and Climate [2.9230020115516253]
Prithvi WxC is a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).
The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions.
We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation.
arXiv Detail & Related papers (2024-09-20T15:53:17Z) - FuXi-2.0: Advancing machine learning weather forecasting model for practical applications [11.50902060124504]
FuXi-2.0 is an advanced machine learning model that delivers 1-hourly global weather forecasts and includes a comprehensive set of meteorological variables.
FuXi-2.0 consistently outperforms ECMWF HRES in forecasting key meteorological variables relevant to wind and solar energy, aviation, and marine shipping sectors.
FuXi-2.0 also integrates both atmospheric and oceanic components, representing a significant step forward in the development of coupled atmospheric-ocean models.
arXiv Detail & Related papers (2024-09-11T11:21:00Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - On some limitations of data-driven weather forecasting models [0.0]
We examine some aspects of the forecasts produced by an exemplar of the current generation of ML models, Pangu-Weather.
The main conclusion is that Pangu-Weather forecasts, and possibly those of similar ML models, do not have the fidelity and physical consistency of physics-based models.
arXiv Detail & Related papers (2023-09-15T15:21:57Z) - FuXi: A cascade machine learning forecasting system for 15-day global
weather forecast [34.812266901884996]
FuXi is a cascaded ML weather forecasting system that provides 15-day global forecasts with a temporal resolution of 6 hours and a spatial resolution of 0.25 degree.
FuXi has comparable forecast performance to ECMWF EM in 15-day forecasts, making FuXi the first ML-based weather forecasting system to accomplish this achievement.
arXiv Detail & Related papers (2023-06-22T13:34:26Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.