論文の概要: Deep-learning-powered data analysis in plankton ecology
- arxiv url: http://arxiv.org/abs/2309.08500v1
- Date: Fri, 15 Sep 2023 16:04:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 14:04:22.226958
- Title: Deep-learning-powered data analysis in plankton ecology
- Title(参考訳): プランクトン生態学におけるディープラーニングデータ解析
- Authors: Harshith Bachimanchi, Matthew I.M. Pinder, Chlo\'e Robert, Pierre De
Wit, Jonathan Havenhand, Alexandra Kinnby, Daniel Midtvedt, Erik Selander,
and Giovanni Volpe
- Abstract要約: ディープラーニングアルゴリズムの実装は、プランクトン生態学に新たな視点をもたらした。
深層学習は様々な環境下でプランクトン生物を研究する客観的スキームを提供する。
- 参考スコア(独自算出の注目度): 31.874825130479174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of deep learning algorithms has brought new perspectives
to plankton ecology. Emerging as an alternative approach to established
methods, deep learning offers objective schemes to investigate plankton
organisms in diverse environments. We provide an overview of
deep-learning-based methods including detection and classification of phyto-
and zooplankton images, foraging and swimming behaviour analysis, and finally
ecological modelling. Deep learning has the potential to speed up the analysis
and reduce the human experimental bias, thus enabling data acquisition at
relevant temporal and spatial scales with improved reproducibility. We also
discuss shortcomings and show how deep learning architectures have evolved to
mitigate imprecise readouts. Finally, we suggest opportunities where deep
learning is particularly likely to catalyze plankton research. The examples are
accompanied by detailed tutorials and code samples that allow readers to apply
the methods described in this review to their own data.
- Abstract(参考訳): 深層学習アルゴリズムの実装はプランクトン生態学に新しい視点をもたらした。
確立された方法に対する別のアプローチとして、ディープラーニングは様々な環境でプランクトン生物を調べるための客観的なスキームを提供する。
本稿では,植物・動物プランクトン画像の検出と分類,飼料・水泳行動解析,最後に生態モデルなど,深層学習に基づく手法の概要について述べる。
ディープラーニングは、分析をスピードアップし、人間の実験的バイアスを低減し、再現性を向上させることで、関連する時間的および空間的スケールのデータ取得を可能にする。
また,不正確な読み出しを緩和するために,ディープラーニングアーキテクチャがどのように進化したかを示す。
最後に、深層学習が特にプランクトン研究を触媒する可能性を提案する。
サンプルには詳細なチュートリアルとコードサンプルが添付されており、このレビューで記述されたメソッドを自身のデータに適用することができる。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark [36.37530623015916]
本稿では,様々な背景情報と観測時の動作変化を網羅するベンチマークデータセットであるMultiple Phytoplankton Tracking (MPT)を提案する。
このデータセットには27種類の植物プランクトンと動物プランクトンが含まれ、14種類の背景があり、多様な複雑な水中環境をシミュレートしている。
標準特徴抽出器の出力残量を予測するための追加特徴抽出器を導入し、抽出器の異なる層の特徴に基づいて多スケールのフレーム間類似性を計算した。
論文 参考訳(メタデータ) (2024-10-22T04:57:28Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - Phylogeny-informed fitness estimation [58.720142291102135]
本研究では, 住民の健康評価を推定するために, フィロジェニーを利用した適合度推定手法を提案する。
以上の結果から, 植物性インフォームドフィットネス推定は, ダウンサンプドレキシケースの欠点を軽減することが示唆された。
この研究は、ランタイム系統解析を利用して進化アルゴリズムを改善するための最初のステップとなる。
論文 参考訳(メタデータ) (2023-06-06T19:05:01Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
本稿では,実環境におけるナビゲーションのパターンを,部分的な観察のみから推測する,初めての自己教師型学習(SSL)手法を提案する。
我々は、DSLPフィールドに最大極大グラフを適合させることにより、グローバルなナビゲーションパターンを推論する方法を実証する。
実験により,我々のSSLモデルはnuScenesデータセット上で2つのSOTA教師付きレーングラフ予測モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-04-26T02:08:46Z) - Plankton-FL: Exploration of Federated Learning for Privacy-Preserving
Training of Deep Neural Networks for Phytoplankton Classification [81.04987357598802]
本研究では,植物プランクトン分類のための深層ニューラルネットワークのプライバシー保護トレーニングにフェデレート学習を活用する可能性を検討する。
我々は2つの異なるフェデレーション学習フレームワーク、フェデレーション学習(FL)と相互排他的FL(ME-FL)をシミュレートする。
本研究では,植物プランクトンモニタリングにおけるフェデレート学習の可能性と可能性について実験的に検証した。
論文 参考訳(メタデータ) (2022-12-18T02:11:03Z) - Efficient Unsupervised Learning for Plankton Images [12.447149371717]
水生生態系の保全には,シチューにおけるプランクトン群集のモニタリングが不可欠である。
このようなデータを分類するための機械学習アルゴリズムの採用は、手動アノテーションの大幅なコストに影響される可能性がある。
プランクトン微生物の正確な分類を行うために,効率的な教師なし学習パイプラインを提案する。
論文 参考訳(メタデータ) (2022-09-14T15:33:16Z) - Unlocking the potential of deep learning for marine ecology: overview,
applications, and outlook [8.3226670069051]
本稿では,海洋生態学者と計算機科学者のギャップを埋めることを目的としている。
本研究では, 一般的な深層学習手法を, 平易な言語における生態データ分析に適用する。
我々は,海洋生態学への深層学習の確立と新たな応用を通じて,課題と機会を解説する。
論文 参考訳(メタデータ) (2021-09-29T21:59:16Z) - Deep Learning Classification of Lake Zooplankton [0.0]
湖沼プランクトンの同定のために開発された深層学習モデルについて述べる。
この目的のために,我々は17900年の動物園プランクトンと大型植物プランクトンコロニーの画像に対して35のクラスに注釈を付けた。
最良モデルは転送学習とアンサンブルに基づいて,98%の精度と93%のF1スコアでプランクトン画像を分類した。
論文 参考訳(メタデータ) (2021-08-11T14:57:43Z) - Complex data labeling with deep learning methods: Lessons from fisheries
acoustics [0.0]
本論文は, 根拠となる真理ラベルが不要であるケーススタディ, エコーグラフラベリングに焦点を当てた。
我々は、非定常データセットでトレーニングされた畳み込みニューラルネットワークが、人間の専門家の補正を必要とする新しいデータセットの一部を強調するために使用できることを実証した。
論文 参考訳(メタデータ) (2020-10-21T13:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。