論文の概要: Complex data labeling with deep learning methods: Lessons from fisheries
acoustics
- arxiv url: http://arxiv.org/abs/2010.11010v1
- Date: Wed, 21 Oct 2020 13:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 01:10:13.561707
- Title: Complex data labeling with deep learning methods: Lessons from fisheries
acoustics
- Title(参考訳): 深層学習法による複雑なデータラベリング:漁業音響学からの教訓
- Authors: J.M.A.Sarr, T. Brochier, P.Brehmer, Y.Perrot, A.Bah, A.Sarr\'e,
M.A.Jeyid, M.Sidibeh, S.El Ayoub
- Abstract要約: 本論文は, 根拠となる真理ラベルが不要であるケーススタディ, エコーグラフラベリングに焦点を当てた。
我々は、非定常データセットでトレーニングされた畳み込みニューラルネットワークが、人間の専門家の補正を必要とする新しいデータセットの一部を強調するために使用できることを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative and qualitative analysis of acoustic backscattered signals from
the seabed bottom to the sea surface is used worldwide for fish stocks
assessment and marine ecosystem monitoring. Huge amounts of raw data are
collected yet require tedious expert labeling. This paper focuses on a case
study where the ground truth labels are non-obvious: echograms labeling, which
is time-consuming and critical for the quality of fisheries and ecological
analysis. We investigate how these tasks can benefit from supervised learning
algorithms and demonstrate that convolutional neural networks trained with
non-stationary datasets can be used to stress parts of a new dataset needing
human expert correction. Further development of this approach paves the way
toward a standardization of the labeling process in fisheries acoustics and is
a good case study for non-obvious data labeling processes.
- Abstract(参考訳): 海底から海面にかけての音響的後方散乱信号の定量的・定性的な分析は,世界の魚類資源評価や海洋生態系モニタリングに用いられている。
大量の原データが収集されるが、面倒な専門家のラベル付けが必要である。
本稿では,漁業の質と生態学的分析に要する時間的・重要なエコーラベリングについて述べる。
我々は、これらのタスクが教師付き学習アルゴリズムの利点をいかに生かし、非定常データセットでトレーニングされた畳み込みニューラルネットワークが、人間の専門家の補正を必要とする新しいデータセットの一部を強調するために利用できるかを実証する。
この手法のさらなる発展は、漁業音響におけるラベル付けプロセスの標準化への道を開くものであり、非有害なデータラベリングプロセスにとって良いケーススタディである。
関連論文リスト
- Reducing Label Dependency for Underwater Scene Understanding: A Survey of Datasets, Techniques and Applications [3.4210271593052606]
調査は、人間の専門家の入力への依存を減らすアプローチに焦点を当てている。
弱く自己監督的な深層学習の背景を提供し、これらの要素を水中モニタリング、コンピュータビジョン、深層学習の交差点を中心とする分類学に統合する。
論文 参考訳(メタデータ) (2024-11-18T05:16:09Z) - WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database [49.1574468325115]
textbfWhaleNet (Wavelet Highly Adaptive Learning Ensemble Network) は海洋哺乳動物の発声を分類するための高度な深層アンサンブルアーキテクチャである。
既存のアーキテクチャよりも8-10%の精度で分類精度を向上し、分類精度は9,7.61%である。
論文 参考訳(メタデータ) (2024-02-20T11:36:23Z) - Deep-learning-powered data analysis in plankton ecology [31.874825130479174]
ディープラーニングアルゴリズムの実装は、プランクトン生態学に新たな視点をもたらした。
深層学習は様々な環境下でプランクトン生物を研究する客観的スキームを提供する。
論文 参考訳(メタデータ) (2023-09-15T16:04:11Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
本稿では,ルールベースのドイツ語CheXpertモデルによってラベル付けされたレポートに基づいて,ディープラーニングに基づくCheXpertラベル予測モデルを提案する。
その結果,3つのタスクすべてにおいて,ルールベースモデルを大幅に上回ったアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-06-09T16:08:35Z) - Persistence-based operators in machine learning [62.997667081978825]
永続性に基づくニューラルネットワークレイヤのクラスを導入します。
永続化ベースのレイヤにより、ユーザは、データによって尊重される対称性に関する知識を容易に注入でき、学習可能なウェイトを備え、最先端のニューラルネットワークアーキテクチャで構成できる。
論文 参考訳(メタデータ) (2022-12-28T18:03:41Z) - Improving the quality control of seismic data through active learning [0.0]
画像復号化問題では、利用可能な画像の密度の増大は、徹底的な視覚検査を不可能にする。
本稿では,最も関連性の高いデータを逐次選択するための新しいアクティブラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-01-17T20:15:37Z) - Unlocking the potential of deep learning for marine ecology: overview,
applications, and outlook [8.3226670069051]
本稿では,海洋生態学者と計算機科学者のギャップを埋めることを目的としている。
本研究では, 一般的な深層学習手法を, 平易な言語における生態データ分析に適用する。
我々は,海洋生態学への深層学習の確立と新たな応用を通じて,課題と機会を解説する。
論文 参考訳(メタデータ) (2021-09-29T21:59:16Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater
Visual Analysis [2.6476746128312194]
我々は、DeepFishを大規模データセットでベンチマークスイートとして提示し、いくつかのコンピュータビジョンタスクのためのメソッドをトレーニングし、テストする。
このデータセットは、熱帯オーストラリアの海洋環境にある20の温帯生物から採取された約4万枚の画像で構成されている。
実験では,データセットの特徴を詳細に分析し,いくつかの最先端手法の性能評価を行った。
論文 参考訳(メタデータ) (2020-08-28T12:20:59Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。