論文の概要: Towards Last-layer Retraining for Group Robustness with Fewer
Annotations
- arxiv url: http://arxiv.org/abs/2309.08534v1
- Date: Fri, 15 Sep 2023 16:52:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 13:41:09.608392
- Title: Towards Last-layer Retraining for Group Robustness with Fewer
Annotations
- Title(参考訳): アノテーションの少ないグループロバスト性のためのラストレイヤリトレーニングに向けて
- Authors: Tyler LaBonte, Vidya Muthukumar, Abhishek Kumar
- Abstract要約: ニューラルネットワークの経験的リスク最小化(ERM)は、急激な相関に過度に依存する傾向がある。
最近のDeep Feature Reweighting技術は、単純な最終層再トレーニングによって最先端のグループロバスト性を実現する。
重み付けデータセットが最低群データのごく一部しか持たない場合でも、最終層再トレーニングは最悪のグループ精度を大幅に向上させることができることを示す。
- 参考スコア(独自算出の注目度): 11.650659637480112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empirical risk minimization (ERM) of neural networks is prone to
over-reliance on spurious correlations and poor generalization on minority
groups. The recent deep feature reweighting (DFR) technique achieves
state-of-the-art group robustness via simple last-layer retraining, but it
requires held-out group and class annotations to construct a group-balanced
reweighting dataset. In this work, we examine this impractical requirement and
find that last-layer retraining can be surprisingly effective with no group
annotations (other than for model selection) and only a handful of class
annotations. We first show that last-layer retraining can greatly improve
worst-group accuracy even when the reweighting dataset has only a small
proportion of worst-group data. This implies a "free lunch" where holding out a
subset of training data to retrain the last layer can substantially outperform
ERM on the entire dataset with no additional data or annotations. To further
improve group robustness, we introduce a lightweight method called selective
last-layer finetuning (SELF), which constructs the reweighting dataset using
misclassifications or disagreements. Our empirical and theoretical results
present the first evidence that model disagreement upsamples worst-group data,
enabling SELF to nearly match DFR on four well-established benchmarks across
vision and language tasks with no group annotations and less than 3% of the
held-out class annotations. Our code is available at
https://github.com/tmlabonte/last-layer-retraining.
- Abstract(参考訳): ニューラルネットワークの経験的リスク最小化(ERM)は、急激な相関と少数集団の一般化の低さに過度に依存する傾向がある。
最近のdeep feature reweighting(dfr)テクニックは、単純なラストレイヤリトレーニングによって最先端のグループロバスト性を実現しているが、グループバランスのリウェイトデータセットを構築するには、ホールドアウトグループとクラスアノテーションが必要である。
本研究では,この非現実的要件を検証し,グループアノテーション(モデル選択以外のもの)や少数のクラスアノテーションを使わずに,最終層再学習が驚くほど効果的であることを示す。
まず,ラスト層リトレーニングによって,再重み付けデータセットが最悪のグループデータの割合が少ない場合にも,最悪のグループ精度が大幅に向上することを示す。
これは、トレーニングデータのサブセットを保持して最後のレイヤを再トレーニングする"フリーランチ"を意味し、追加のデータやアノテーションなしでデータセット全体のEMMを大幅に上回る。
グループロバスト性をさらに向上するために,不一致や誤分類を用いてデータセットの再重み付けを行う,選択的ラストレイヤーファインチューニング(self)と呼ばれる軽量な手法を導入する。
我々の経験的および理論的結果は、モデル不一致が最悪のグループデータを増幅する最初の証拠を示し、SELFはグループアノテーションなしで、グループアノテーションの3%以下で、視覚と言語タスクの4つの確立されたベンチマークでDFRにほぼ一致する。
私たちのコードはhttps://github.com/tmlabonte/last-layer-retrainingで利用可能です。
関連論文リスト
- Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation [3.894771553698554]
経験的リスク最小化(ERM)モデルは、ターゲットと高い刺激的な相関を持つ属性に依存する傾向がある。
これにより、これらの属性を欠いた未表現(または'マイナー')グループのパフォーマンスを低下させることができる。
本稿では,環境に基づく検証と損失に基づくサンプリング(EVaLS)を提案する。
論文 参考訳(メタデータ) (2024-10-07T08:17:44Z) - Data Debiasing with Datamodels (D3M): Improving Subgroup Robustness via Data Selection [80.85902083005237]
データモデルによるデータデバイアス(Data Debiasing with Datamodels, D3M)は、マイノリティグループにおけるモデルの障害を駆動する特定のトレーニング例を分離し、削除するデバイアス(debiasing)アプローチである。
論文 参考訳(メタデータ) (2024-06-24T17:51:01Z) - Annotation-Free Group Robustness via Loss-Based Resampling [3.355491272942994]
経験的リスク最小化による画像分類のためのニューラルネットワークのトレーニングは、予測のための因果的属性ではなく、突発的な属性に依存することに脆弱である。
トレーニングデータの小さな分割に対してERM事前学習モデルを評価することにより、データのグループ化を推測する。
水鳥とCelebAデータセットの様々なバージョンにおけるLFRの評価を行った。
論文 参考訳(メタデータ) (2023-12-08T08:22:02Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z) - Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group
Shifts [122.08782633878788]
いくつかの堅牢なトレーニングアルゴリズム(例えば、グループDRO)は、グループシフトを専門とし、すべてのトレーニングポイントについてグループ情報を必要とする。
グループアノテーションを必要としない他の方法(CVaR DROなど)は、過度に保守的である。
低機能により実現された単純な群関数の精度を維持するモデルを学習する。
論文 参考訳(メタデータ) (2023-02-06T17:07:16Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
既存のメソッドは、最悪のグループのパフォーマンスを改善することができるが、それらは、しばしば高価で入手できないグループアノテーションを必要とする。
モデルパラメータの勾配の空間にデータをクラスタリングすることで,アウトレーヤの存在下でグループアノテーションを学習する問題に対処する。
そこで我々は,DBSCANのような標準クラスタリング手法に適合するように,マイノリティグループや外れ値に関する情報を保存しながら,勾配空間内のデータがより単純な構造を持つことを示す。
論文 参考訳(メタデータ) (2022-10-13T06:04:43Z) - Take One Gram of Neural Features, Get Enhanced Group Robustness [23.541213868620837]
経験的リスク最小化で訓練された機械学習モデルの予測性能は、分散シフト下で大幅に低下する可能性がある。
本稿では,識別モデルの抽出した特徴の文法行列に基づいて,トレーニングデータセットをグループに分割する。
このアプローチは、ERMに対するグループロバスト性を向上するだけでなく、最近のすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2022-08-26T12:34:55Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
経験的リスク最小化による標準トレーニングは、特定のグループにおける平均的かつ低い精度で高い精度を達成するモデルを生成することができる。
群分布的ロバストな最適化 (group DRO) のような、最悪のグループ精度を達成する以前のアプローチでは、トレーニングポイントごとに高価なグループアノテーションが必要である。
本稿では,複数のエポックに対して標準的なERMモデルを訓練し,第1モデルが誤分類したトレーニング例を重み付けする第2モデルを訓練する,単純な2段階のアプローチであるJTTを提案する。
論文 参考訳(メタデータ) (2021-07-19T17:52:32Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。