論文の概要: Towards Robust Continual Learning with Bayesian Adaptive Moment
Regularization
- arxiv url: http://arxiv.org/abs/2309.08546v1
- Date: Fri, 15 Sep 2023 17:10:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 13:42:48.238494
- Title: Towards Robust Continual Learning with Bayesian Adaptive Moment
Regularization
- Title(参考訳): ベイズ適応モーメント正規化によるロバスト連続学習に向けて
- Authors: Jack Foster and Alexandra Brintrup
- Abstract要約: 継続的な学習は破滅的な忘れ込みという課題を克服しようと試み、そこでは新しいタスクを解くための学習が、モデルが以前に学習した情報を忘れる原因となる。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れ込みを抑える新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 57.71118589124002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The pursuit of long-term autonomy mandates that robotic agents must
continuously adapt to their changing environments and learn to solve new tasks.
Continual learning seeks to overcome the challenge of catastrophic forgetting,
where learning to solve new tasks causes a model to forget previously learnt
information. Prior-based continual learning methods are appealing for robotic
applications as they are space efficient and typically do not increase in
computational complexity as the number of tasks grows. Despite these desirable
properties, prior-based approaches typically fail on important benchmarks and
consequently are limited in their potential applications compared to their
memory-based counterparts. We introduce Bayesian adaptive moment regularization
(BAdam), a novel prior-based method that better constrains parameter growth,
leading to lower catastrophic forgetting. Our method boasts a range of
desirable properties for robotic applications such as being lightweight and
task label-free, converging quickly, and offering calibrated uncertainty that
is important for safe real-world deployment. Results show that BAdam achieves
state-of-the-art performance for prior-based methods on challenging
single-headed class-incremental experiments such as Split MNIST and Split
FashionMNIST, and does so without relying on task labels or discrete task
boundaries.
- Abstract(参考訳): 長期的な自律性の追求は、ロボットエージェントが変化する環境に継続的に適応し、新しいタスクの解決を学ぶことを義務付ける。
継続的な学習は破滅的な忘れ込みという課題を克服しようと試み、そこでは新しいタスクを解くための学習が、モデルが以前に学習した情報を忘れる原因となる。
従来の連続学習手法は、空間効率が高く、タスクの数が増加するにつれて計算複雑性が増大しないため、ロボット応用にアピールしている。
このような望ましい特性にもかかわらず、事前ベースのアプローチは、通常は重要なベンチマークで失敗するため、メモリベースのアプローチに比べて潜在的なアプリケーションでは制限される。
ベイズ適応モーメント正規化(Badam)は,パラメータ成長の抑制を図り,破滅的な記憶を抑える新しい手法である。
本手法は,軽量でタスクラベルフリー,高速収束,安全な実世界の展開に重要な不確実性を校正するなど,ロボットアプリケーションにとって望ましい特性を誇っている。
その結果, BAdamは, Split MNIST や Split FashionMNIST のような単頭クラスインクリメンタルな実験に挑戦し, タスクラベルや個別タスク境界に頼らずに, 先行手法の最先端性能を実現していることがわかった。
関連論文リスト
- Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
ディープラーニングモデルを非定常環境に適用することの本質的な困難さは、ニューラルネットワークの実際のタスクへの適用性を制限している。
ネットワークの事前学習部分の更新を回避し、通常の分類ヘッドだけでなく、新たに導入した学習可能なパラメータのセットも学習することで、微調整手順をより効果的にするための新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-06-05T15:11:59Z) - Class-Incremental Learning by Knowledge Distillation with Adaptive
Feature Consolidation [39.97128550414934]
本稿では,ディープニューラルネットワークに基づく新しいクラスインクリメンタル学習手法を提案する。
以前のタスクの例を格納するためのメモリが限られている新しいタスクを継続的に学習する。
我々のアルゴリズムは知識蒸留に基づいており、古いモデルの表現を維持するための原則的な方法を提供する。
論文 参考訳(メタデータ) (2022-04-02T16:30:04Z) - Center Loss Regularization for Continual Learning [0.0]
一般的に、ニューラルネットワークには、さまざまなタスクを逐次学習する能力がない。
提案手法では,従来のタスクに近い新しいタスクの表現を投影することで,古いタスクを記憶する。
提案手法は,最先端の継続的学習手法と比較して,スケーラブルで効果的で,競争力のある性能を示す。
論文 参考訳(メタデータ) (2021-10-21T17:46:44Z) - Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding
Meta-Amortization Error [50.83356836818667]
循環型アニーリングスケジュールとMMD基準を用いた新しいメタレギュラー化目標を構築した。
実験の結果,本手法は標準的なメタ学習アルゴリズムよりもかなり優れていることがわかった。
論文 参考訳(メタデータ) (2020-03-04T04:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。