論文の概要: Temporal-Difference Variational Continual Learning
- arxiv url: http://arxiv.org/abs/2410.07812v1
- Date: Thu, 10 Oct 2024 10:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:46:14.535766
- Title: Temporal-Difference Variational Continual Learning
- Title(参考訳): 時間差変動連続学習
- Authors: Luckeciano C. Melo, Alessandro Abate, Yarin Gal,
- Abstract要約: 現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
- 参考スコア(独自算出の注目度): 89.32940051152782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks. This adaptability allows them to respond to potentially inevitable shifts in the data-generating distribution over time. However, in Continual Learning (CL) settings, models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. Variational Continual Learning methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution and enforces it to stay close to the latest posterior estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. We evaluate the proposed objectives on challenging versions of popular CL benchmarks, demonstrating that they outperform standard Variational CL methods and non-variational baselines, effectively alleviating Catastrophic Forgetting.
- Abstract(参考訳): 現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
この適応性は、時間とともにデータ生成の分散において、潜在的に避けられない変化に応答することを可能にする。
しかしながら、継続学習(CL)設定では、モデルは以前の知識(メモリ安定性)を保持することで、新しいタスク(塑性)の学習のバランスをとるのに苦労することが多い。
結果として、それらは、パフォーマンスを低下させ、デプロイされたシステムの信頼性を損なうカタストロフィック・フォージッティング(Caastrophic Forgetting)の影響を受けやすい。
変分連続学習法は, 再帰的に後続分布を更新し, 最新推定値に近づき続ける学習目標を用いて, この課題に対処する。
しかし, 逐次再帰に対する近似誤差が混在しているため, これらの手法は有効でない可能性がある。
これを軽減するために,複数回の先行推定の正規化効果を統合した新たな学習目標を提案する。
強化学習と神経科学の一般的な学習メカニズムである時間差法とこれらの目的との関係を明らかにする。
提案手法は,標準変分CL法および非変分ベースラインよりも優れた性能を示し,破滅的予測を効果的に緩和するものである。
関連論文リスト
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormerは構造ベースの連続トランスフォーマーモデルであり、メタポリシックネットワークを介して、以前のポリシーを適応的に構成する。
実験の結果,CompoFormerは従来の継続学習法(CL)よりも優れており,特にタスクシーケンスが長いことが判明した。
論文 参考訳(メタデータ) (2024-11-18T08:20:21Z) - ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
連続学習(CL)は、連続的に提示される複数のタスクを解決できるモデルを訓練することを目的としている。
最近のCLアプローチは、ダウンストリームタスクをうまく一般化する大規模な事前学習モデルを活用することで、強力なパフォーマンスを実現している。
しかし、これらの手法には理論的保証がなく、予期せぬ失敗をしがちである。
私たちは、経験的に強いアプローチを原則化されたフレームワークに統合することで、このギャップを埋めます。
論文 参考訳(メタデータ) (2024-10-01T12:58:37Z) - Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations [12.042768320132694]
本稿では,連続的な学習課題として,データセット間のポーズ推定を再構成する。
我々は、破滅的な忘れを緩和するための確立された正規化に基づく手法に対して、この定式化をベンチマークする。
提案手法は,既存の正規化に基づく継続学習戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-30T16:29:30Z) - Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning [15.475427498268393]
TAALM(Train-Attention-Augmented Language Model)は,トークンに対する重み付けを動的に予測・適用することにより,学習効率を向上させる。
我々は,TAALMがベースライン上での最先端性能を証明し,従来のCKLアプローチと統合した場合に相乗的互換性を示すことを示す。
論文 参考訳(メタデータ) (2024-07-24T01:04:34Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
FSCIL(Few-Shot Class Incremental Learning)は、いくつかの学習セッションで限られたトレーニング例が利用できる、挑戦的な継続的学習タスクである。
このタスクを成功させるためには、数発のトレーニングセットにおけるバイアス分布に起因する新しいクラスを過度に適合させるのを避ける必要がある。
CPE-CLIPは、最先端の提案と比較してFSCILの性能を著しく改善すると同時に、学習可能なパラメータの数やトレーニングコストを大幅に削減する。
論文 参考訳(メタデータ) (2023-03-08T17:34:15Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。