Bias in LLMs as Annotators: The Effect of Party Cues on Labelling Decision by Large Language Models
- URL: http://arxiv.org/abs/2408.15895v1
- Date: Wed, 28 Aug 2024 16:05:20 GMT
- Title: Bias in LLMs as Annotators: The Effect of Party Cues on Labelling Decision by Large Language Models
- Authors: Sebastian Vallejo Vera, Hunter Driggers,
- Abstract summary: We test similar biases in Large Language Models (LLMs) as annotators.
Unlike humans, who are only biased when faced with statements from extreme parties, LLMs exhibit significant bias even when prompted with statements from center-left and center-right parties.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human coders are biased. We test similar biases in Large Language Models (LLMs) as annotators. By replicating an experiment run by Ennser-Jedenastik and Meyer (2018), we find evidence that LLMs use political information, and specifically party cues, to judge political statements. Not only do LLMs use relevant information to contextualize whether a statement is positive, negative, or neutral based on the party cue, they also reflect the biases of the human-generated data upon which they have been trained. We also find that unlike humans, who are only biased when faced with statements from extreme parties, LLMs exhibit significant bias even when prompted with statements from center-left and center-right parties. The implications of our findings are discussed in the conclusion.
Related papers
- Bias in the Mirror: Are LLMs opinions robust to their own adversarial attacks ? [22.0383367888756]
Large language models (LLMs) inherit biases from their training data and alignment processes, influencing their responses in subtle ways.
We introduce a novel approach where two instances of an LLM engage in self-debate, arguing opposing viewpoints to persuade a neutral version of the model.
We evaluate how firmly biases hold and whether models are susceptible to reinforcing misinformation or shifting to harmful viewpoints.
arXiv Detail & Related papers (2024-10-17T13:06:02Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
Large Language Models (LLM) are prone to inheriting and amplifying societal biases.
LLM bias can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities.
arXiv Detail & Related papers (2024-08-20T23:54:26Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
We conduct a rigorous evaluation of Large Language Models' implicit bias towards certain groups by attacking them with carefully crafted instructions to elicit biased responses.
We propose three attack approaches, i.e., Disguise, Deception, and Teaching, based on which we built evaluation datasets for four common bias types.
arXiv Detail & Related papers (2024-06-20T06:42:08Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
arXiv Detail & Related papers (2024-05-17T15:30:18Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs [67.51906565969227]
We study the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks.
Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups.
arXiv Detail & Related papers (2023-11-08T18:52:17Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content.
This paper critically examines gender biases in LLM-generated reference letters.
arXiv Detail & Related papers (2023-10-13T16:12:57Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
This paper investigates Large Language Models' behavior with respect to gender stereotypes.
We use a simple paradigm to test the presence of gender bias, building on but differing from WinoBias.
Our contributions in this paper are as follows: (a) LLMs are 3-6 times more likely to choose an occupation that stereotypically aligns with a person's gender; (b) these choices align with people's perceptions better than with the ground truth as reflected in official job statistics; (d) LLMs ignore crucial ambiguities in sentence structure 95% of the time in our study items, but when explicitly prompted, they recognize
arXiv Detail & Related papers (2023-08-28T22:32:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.