A solid-state platform for cooperative quantum dynamics driven by correlated emission
- URL: http://arxiv.org/abs/2309.08991v3
- Date: Mon, 3 Jun 2024 17:03:29 GMT
- Title: A solid-state platform for cooperative quantum dynamics driven by correlated emission
- Authors: Xin Li, Jamir Marino, Darrick E. Chang, Benedetta Flebus,
- Abstract summary: We set the stage for the -- yet uncharted -- exploration of analogous cooperative phenomena in hybrid solid-state platforms.
We develop a comprehensive formalism for the quantum many-body dynamics of an ensemble of solid-state spin defects interacting dissipatively with a common solid-state reservoir.
Our work lays the foundation for a multi-qubit approach to quantum sensing of solid-state systems and the direct generation of many-body entanglement in spin-defect ensembles.
- Score: 3.609024579243597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While traditionally regarded as an obstacle to quantum coherence, recent breakthroughs in quantum optics have shown that the dissipative interaction of a qubit with its environment can be leveraged to protect quantum states and synthesize many-body entanglement. Inspired by this progress, here we set the stage for the -- yet uncharted -- exploration of analogous cooperative phenomena in hybrid solid-state platforms. We develop a comprehensive formalism for the quantum many-body dynamics of an ensemble of solid-state spin defects interacting dissipatively with the magnetic field fluctuations of a common solid-state reservoir. Our framework applies to any solid-state reservoir whose fluctuating spin, pseudospin, or charge degrees of freedom generate magnetic fields. To understand whether correlations induced by dissipative processes can play a relevant role in a realistic experimental setup, we apply our model to a qubit array interacting via the spin fluctuations of a ferromagnetic bath. Our results show that the low-temperature collective relaxation rates of the qubit ensemble can display clear signatures of super- and subradiance, i.e., forms of cooperative dynamics traditionally achieved in atomic ensembles. We find that the solid-state analog of these cooperative phenomena is robust against spatial disorder in the qubit ensemble and thermal fluctuations of the magnetic reservoir, providing a route for their feasibility in near-term experiments. Our work lays the foundation for a multi-qubit approach to quantum sensing of solid-state systems and the direct generation of many-body entanglement in spin-defect ensembles. Furthermore, we discuss how the tunability of solid-state reservoirs opens up novel pathways for exploring cooperative phenomena in regimes beyond the reach of conventional quantum optics setups.
Related papers
- Reservoir-engineered spin squeezing in quantum hybrid solid-state platforms [0.0]
We propose a scheme to generate long-lived spin squeezing in an ensemble of solid-state qubits interacting with electromagnetic noise emitted by a squeezed solid-state bath.
Results show that the ensemble can exhibit steady-state spin squeezing under suitable conditions, paving the way for the generation of steady-state many-body entanglement in ensembles of solid-state spin defects.
arXiv Detail & Related papers (2024-10-21T02:14:33Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Bell-state generation for spin qubits via dissipative coupling [3.011018394325566]
We investigate the dynamics of two spin qubits interacting with a magnetic medium.
We show how a sizable long-lived entanglement can be established via the magnetic environment.
Our study may find applications in quantum information science, quantum spintronics, and for sensing of nonlocal quantum correlations.
arXiv Detail & Related papers (2021-08-16T22:36:48Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.