The Quantum-Extended Church-Turing Thesis in Quantum Field Theory
- URL: http://arxiv.org/abs/2309.09000v1
- Date: Sat, 16 Sep 2023 14:04:33 GMT
- Title: The Quantum-Extended Church-Turing Thesis in Quantum Field Theory
- Authors: Cameron Cianci
- Abstract summary: The quantum-Extended Church-Turing thesis has been explored in many physical theories including general relativity.
We demonstrate that one of the defining features of quantum field theory, particle creation and annihilation, is not likely to violate the quantum-Extended Church-Turing thesis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum-Extended Church-Turing thesis has been explored in many physical
theories including general relativity but lacks exploration in quantum field
theories such as quantum electrodynamics. Through construction of a
computational model whose gate set mimics the interactions of QED, we
demonstrate that one of the defining features of quantum field theory, particle
creation and annihilation, is not likely to violate the quantum-Extended
Church-Turing thesis. Through this computational model, it is shown that
particle creation is likely only another form of quantum parallelism. However,
whether or not the quantum-Extended Church-Turing thesis will hold for all
computational devices in quantum field theories is still not known. For
example, we briefly examine certain interactions in quantum electrodynamics
which may create multi-qubit gates. These gates may have exponential complexity
at the cost of being exponentially weak. This may in turn allow for
computational advantage over traditional gate sets such as Clifford+T.
Related papers
- Counterfactuals in Macroscopic Quantum Physics: Irreversibility, Measurement and Locality [0.0]
We argue that measurement, irreversibility and locality can all appear to challenge the universality of quantum theory.<n>We find novel features of quantum thermodynamics relating to irreversibility, information erasure and coherence.<n>This reveals new ways of characterising the quantum information stored in entanglement and quantum branching structure.
arXiv Detail & Related papers (2025-05-28T20:14:17Z) - Universal quantum computation using Ising anyons from a non-semisimple Topological Quantum Field Theory [0.058331173224054456]
We propose a framework for topological quantum computation using newly discovered non-semisimple analogs of topological quantum field theories in 2+1 dimensions.
We show that the non-semisimple theory introduces new anyon types that extend the Ising framework.
arXiv Detail & Related papers (2024-10-18T21:03:07Z) - Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Circuit Completeness: Extensions and Simplifications [44.99833362998488]
The first complete equational theory for quantum circuits has only recently been introduced.
We simplify the equational theory by proving that several rules can be derived from the remaining ones.
The complete equational theory can be extended to quantum circuits with ancillae or qubit discarding.
arXiv Detail & Related papers (2023-03-06T13:31:27Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z) - Quantum supremacy in driven quantum many-body systems [0.0]
We show that quantum supremacy can be obtained in generic periodically-driven quantum many-body systems.
Our proposal opens the way for a large class of quantum platforms to demonstrate and benchmark quantum supremacy.
arXiv Detail & Related papers (2020-02-27T07:20:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.