Earth Virtualization Engines -- A Technical Perspective
- URL: http://arxiv.org/abs/2309.09002v1
- Date: Sat, 16 Sep 2023 14:14:39 GMT
- Title: Earth Virtualization Engines -- A Technical Perspective
- Authors: Torsten Hoefler, Bjorn Stevens, Andreas F. Prein, Johanna Baehr,
Thomas Schulthess, Thomas F. Stocker, John Taylor, Daniel Klocke, Pekka
Manninen, Piers M. Forster, Tobias K\"olling, Nicolas Gruber, Hartwig Anzt,
Claudia Frauen, Florian Ziemen, Milan Kl\"ower, Karthik Kashinath, Christoph
Sch\"ar, Oliver Fuhrer, Bryan N. Lawrence
- Abstract summary: EVEs aim to provide interactive and accessible climate simulations and data for a wide range of users.
They combine high-resolution physics-based models with machine learning techniques to improve the fidelity, efficiency, and interpretability of climate projections.
- Score: 11.370541118978181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Participants of the Berlin Summit on Earth Virtualization Engines (EVEs)
discussed ideas and concepts to improve our ability to cope with climate
change. EVEs aim to provide interactive and accessible climate simulations and
data for a wide range of users. They combine high-resolution physics-based
models with machine learning techniques to improve the fidelity, efficiency,
and interpretability of climate projections. At their core, EVEs offer a
federated data layer that enables simple and fast access to exabyte-sized
climate data through simple interfaces. In this article, we summarize the
technical challenges and opportunities for developing EVEs, and argue that they
are essential for addressing the consequences of climate change.
Related papers
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Foundation Models for Weather and Climate Data Understanding: A
Comprehensive Survey [39.08108001903514]
We offer an exhaustive, timely overview of state-of-the-art AI methodologies specifically engineered for weather and climate data.
Our primary coverage encompasses four critical aspects: types of weather and climate data, principal model, model scopes and applications, and datasets for weather and climate.
arXiv Detail & Related papers (2023-12-05T01:10:54Z) - ClimateLearn: Benchmarking Machine Learning for Weather and Climate
Modeling [20.63843548201849]
ClimateLearn is an open-source library that vastly simplifies the training and evaluation of machine learning models for data-driven climate science.
It is the first large-scale, open-source effort for bridging research in weather and climate modeling with modern machine learning systems.
arXiv Detail & Related papers (2023-07-04T20:36:01Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
We propose a novel solution by utilizing a principle from statistical physics known as the Fluctuation-Dissipation Theorem (FDT)
By leveraging, we are able to extract information encoded in a large dataset produced by Earth System Models.
Our model, AiBEDO, is capable of capturing the complex, multi-timescale effects of radiation perturbations on global and regional surface climate.
arXiv Detail & Related papers (2023-02-07T05:09:10Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - AI for Global Climate Cooperation: Modeling Global Climate Negotiations,
Agreements, and Long-Term Cooperation in RICE-N [75.67460895629348]
Achieving long-term cooperation on climate change mitigation with n strategic agents poses a complex game-theoretic problem.
We introduce RICE-N, a multi-region integrated assessment model that simulates the global climate and economy.
We describe how to use multi-agent reinforcement learning to train rational agents using RICE-N.
arXiv Detail & Related papers (2022-08-15T04:38:06Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
We present our solution to simulate photo-realistic floods on authentic images.
We propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation.
arXiv Detail & Related papers (2021-10-06T15:54:57Z) - CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims [4.574830585715129]
We introduce CLIMATE-FEVER, a new dataset for verification of climate change-related claims.
We adapt the methodology of FEVER [1], the largest dataset of artificially designed claims, to real-life claims collected from the Internet.
We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the textscfever framework.
arXiv Detail & Related papers (2020-12-01T16:32:54Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
Climate models play a crucial role in understanding the effect of environmental changes on climate to help mitigate climate risks and inform decisions.
Large global climate models such as the Community Earth System Model (CESM), are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice.
Our work uses probabilistics like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional and man-made data.
arXiv Detail & Related papers (2020-10-08T15:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.