A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences
- URL: http://arxiv.org/abs/2504.14174v1
- Date: Sat, 19 Apr 2025 04:31:35 GMT
- Title: A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences
- Authors: Jing Han, Hanting Chen, Kai Han, Xiaomeng Huang, Yongyun Hu, Wenjun Xu, Dacheng Tao, Ping Zhang,
- Abstract summary: Many problems in meteorology can now be addressed using AI models.<n>Data-driven algorithms have significantly improved accuracy compared to traditional methods.<n>We propose a new paradigm where observational data from different perspectives are treated as multimodal data and integrated via transformers.
- Score: 59.05404971880922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of machine learning in recent years, many problems in meteorology can now be addressed using AI models. In particular, data-driven algorithms have significantly improved accuracy compared to traditional methods. Meteorological data is often transformed into 2D images or 3D videos, which are then fed into AI models for learning. Additionally, these models often incorporate physical signals, such as temperature, pressure, and wind speed, to further enhance accuracy and interpretability. In this paper, we review several representative AI + Weather/Climate algorithms and propose a new paradigm where observational data from different perspectives, each with distinct physical meanings, are treated as multimodal data and integrated via transformers. Furthermore, key weather and climate knowledge can be incorporated through regularization techniques to further strengthen the model's capabilities. This new paradigm is versatile and can address a variety of tasks, offering strong generalizability. We also discuss future directions for improving model accuracy and interpretability.
Related papers
- A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.
This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Learning Weather Models from Data with WSINDy [0.0]
We show that Weak form Sparse Identification of Dynamics (WSINDy) algorithm can learn effective weather models from both simulated and assimilated data.<n>Our approach adapts the standard WSINDy algorithm to work with high-dimensional fluid data of arbitrary dimension.
arXiv Detail & Related papers (2025-01-01T06:03:07Z) - Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
Our study proposes a novel preprocessing method and convolutional autoencoder model to improve the interpretation of synoptic weather maps.
This model could recognize historical synoptic weather maps that nearly match current atmospheric conditions.
arXiv Detail & Related papers (2024-11-08T07:46:50Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.<n>Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.<n>We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
We present ClimODE, a continuous-time process that implements key principle of statistical mechanics.
ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow.
Our approach outperforms existing data-driven methods in global, regional forecasting with an order of magnitude smaller parameterization.
arXiv Detail & Related papers (2024-04-15T06:38:21Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - AI Foundation Models for Weather and Climate: Applications, Design, and
Implementation [3.3929630603919394]
Machine learning and deep learning methods have been widely explored in understanding the chaotic behavior of the atmosphere and furthering weather forecasting.
Recent approaches using transformers, physics-informed machine learning, and graph neural networks have demonstrated state-of-the-art performance on relatively narrow scales and specific tasks.
arXiv Detail & Related papers (2023-09-19T17:50:27Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
Inferences mean understanding variables relations, deriving models that are physically interpretable.
Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics.
This is a collective long-term AI agenda towards developing and applying algorithms capable of discovering knowledge in the Earth system.
arXiv Detail & Related papers (2020-10-18T16:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.