論文の概要: Recovering Missing Node Features with Local Structure-based Embeddings
- arxiv url: http://arxiv.org/abs/2309.09068v1
- Date: Sat, 16 Sep 2023 18:23:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 17:44:57.770993
- Title: Recovering Missing Node Features with Local Structure-based Embeddings
- Title(参考訳): ローカル構造に基づく埋め込みによるノード機能の復元
- Authors: Victor M. Tenorio, Madeline Navarro, Santiago Segarra and Antonio G.
Marques
- Abstract要約: グラフの集合に対して、完全に欠落したノード機能を復元するフレームワークを提案する。
我々のアプローチは、グラフトポロジーと既存の結節値の両方からの事前情報を取り入れている。
- 参考スコア(独自算出の注目度): 34.79801041888119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Node features bolster graph-based learning when exploited jointly with
network structure. However, a lack of nodal attributes is prevalent in graph
data. We present a framework to recover completely missing node features for a
set of graphs, where we only know the signals of a subset of graphs. Our
approach incorporates prior information from both graph topology and existing
nodal values. We demonstrate an example implementation of our framework where
we assume that node features depend on local graph structure. Missing nodal
values are estimated by aggregating known features from the most similar nodes.
Similarity is measured through a node embedding space that preserves local
topological features, which we train using a Graph AutoEncoder. We empirically
show not only the accuracy of our feature estimation approach but also its
value for downstream graph classification. Our success embarks on and implies
the need to emphasize the relationship between node features and graph
structure in graph-based learning.
- Abstract(参考訳): Nodeはネットワーク構造と併用してグラフベースの学習を行う。
しかし、グラフデータではnodal属性の欠如が一般的である。
グラフのサブセットの信号しか知ることができないグラフの集合に対して、完全に欠落したノード機能を回復するためのフレームワークを提案する。
本手法では,グラフトポロジーと既存のnodal値の両方から事前情報を取り込む。
我々は,ノードの機能が局所グラフ構造に依存すると仮定したフレームワークの実装例を示す。
nodal値の欠如は、最も類似したノードから既知の特徴を集約することで推定される。
類似性は、ローカルなトポロジ的特徴を保存するノード埋め込みスペースを通じて測定され、グラフオートエンコーダを使ってトレーニングする。
我々は,特徴量推定手法の精度だけでなく,下流のグラフ分類におけるその価値を実証的に示す。
我々の成功は、グラフベースの学習において、ノードの特徴とグラフ構造との関係を強調する必要性を浮き彫りにしている。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
グラフ分類のためのSAR-GNN(Saliency-Aware Regularized Graph Neural Network)を提案する。
まず,コンパクトなグラフ表現とノード特徴とのセマンティックな類似性を測定することで,グローバルノードの正当性を推定する。
そして、学習した塩分濃度分布を利用して、背骨の近傍集合を規則化する。
論文 参考訳(メタデータ) (2024-01-01T13:44:16Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Graph Attention Retrospective [14.52271219759284]
グラフベースの学習は、ソーシャルネットワーク、引用ネットワーク、バイオインフォマティクスに応用された機械学習の急速に成長するサブフィールドである。
本稿では,グラフ注意ネットワークの挙動を理論的に検討する。
ガウスの手段間の距離が十分大きい「容易」な体制では、グラフの注意はクラス内縁とクラス間縁を区別することができる。
硬い」体制では、すべての注意機構がクラス内エッジとクラス間エッジを区別できないことを示す。
論文 参考訳(メタデータ) (2022-02-26T04:58:36Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
グラフの表現学習アルゴリズムである node2coords を導入する。
低次元空間を同時に学習し、その空間内のノードを座標する。
実験の結果,node2coordで学習した表現は解釈可能であることがわかった。
論文 参考訳(メタデータ) (2020-07-31T13:14:25Z) - Robust Hierarchical Graph Classification with Subgraph Attention [18.7475578342125]
本稿では,グラフに対するサブグラフアテンションの概念を紹介する。
本稿では,SubGattPoolというグラフ分類アルゴリズムを提案する。
SubGattPoolは、最先端のグラフ分類データセットを改善することができるか、あるいは、複数の公開グラフ分類データセットで競争力を維持することができることを示す。
論文 参考訳(メタデータ) (2020-07-19T10:03:06Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。