論文の概要: Public Perceptions of Gender Bias in Large Language Models: Cases of
ChatGPT and Ernie
- arxiv url: http://arxiv.org/abs/2309.09120v1
- Date: Sun, 17 Sep 2023 00:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 17:22:58.618275
- Title: Public Perceptions of Gender Bias in Large Language Models: Cases of
ChatGPT and Ernie
- Title(参考訳): 大規模言語モデルにおけるジェンダーバイアスの一般認識: ChatGPT と Ernie の事例
- Authors: Kyrie Zhixuan Zhou, Madelyn Rose Sanfilippo
- Abstract要約: 本研究では,大規模言語モデルにおけるジェンダーバイアスの認知度を評価するために,ソーシャルメディア上での議論の内容分析を行った。
人々は、個人使用における性別バイアスの観察と、LSMにおける性別バイアスに関する科学的知見の両方を共有した。
LLMにおけるジェンダーバイアスを規制するためのガバナンスレコメンデーションを提案する。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models are quickly gaining momentum, yet are found to
demonstrate gender bias in their responses. In this paper, we conducted a
content analysis of social media discussions to gauge public perceptions of
gender bias in LLMs which are trained in different cultural contexts, i.e.,
ChatGPT, a US-based LLM, or Ernie, a China-based LLM. People shared both
observations of gender bias in their personal use and scientific findings about
gender bias in LLMs. A difference between the two LLMs was seen -- ChatGPT was
more often found to carry implicit gender bias, e.g., associating men and women
with different profession titles, while explicit gender bias was found in
Ernie's responses, e.g., overly promoting women's pursuit of marriage over
career. Based on the findings, we reflect on the impact of culture on gender
bias and propose governance recommendations to regulate gender bias in LLMs.
- Abstract(参考訳): 大規模な言語モデルは急速に勢いを増しているが、その反応に性別バイアスが現れる。
本稿では,異なる文化的文脈で訓練されたllm,すなわち米国拠点のllmであるchatgpt,中国拠点のllmであるernieにおけるジェンダーバイアスに対する一般の認識を評価するために,ソーシャルメディアの議論の内容分析を行った。
人々は、個人使用における性別バイアスの観察と、LSMにおける性別バイアスに関する科学的知見の両方を共有した。
2つの LLM の違いが見られ、ChatGPT は、例えば、異なる職業を持つ男女を関連付けるなど、暗黙の性的偏見を持つことがしばしば見出され、一方、Ernie の反応では、例えば、女性がキャリアよりも結婚を追求することを過度に促進している。
以上より,文化がジェンダーバイアスに与える影響を考察し,llmにおけるジェンダーバイアスを規制するためのガバナンス・レコメンデーションを提案する。
関連論文リスト
- Popular LLMs Amplify Race and Gender Disparities in Human Mobility [2.601262068492271]
本研究では,大規模言語モデル (LLM) が人種や性別に基づく人体移動の予測に偏りを示すかどうかを検討する。
LLMは、既存の社会的バイアスをよく反映し、増幅する。
論文 参考訳(メタデータ) (2024-11-18T19:41:20Z) - Gender Bias in LLM-generated Interview Responses [1.6124402884077915]
本研究は, モデル, 質問タイプ, 職種にまたがって, LLM生成面接応答の多面的監査を行うための3つのLCMを評価した。
その結果,男女の偏見は一貫しており,性別のステレオタイプや仕事の優位性と密接に一致していることが判明した。
論文 参考訳(メタデータ) (2024-10-28T05:08:08Z) - GenderAlign: An Alignment Dataset for Mitigating Gender Bias in Large Language Models [20.98831667981121]
大きな言語モデル(LLM)は、性別バイアスを示すコンテンツを生成する傾向がある。
GenderAlignデータセットは8kのシングルターンダイアログで構成されており、それぞれに "chosen" と "rejected" の応答がペアリングされている。
拒絶された」反応と比較すると、「ちょうせん」反応は性バイアスのレベルが低く、より高い品質を示す。
論文 参考訳(メタデータ) (2024-06-20T01:45:44Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
社会的偏見は言語機関に現れることがある。
本稿では,言語庁バイアス評価ベンチマークを紹介する。
我々は,最近の3つのLarge Language Model(LLM)生成コンテンツにおいて,言語エージェンシーの社会的バイアスを明らかにした。
論文 参考訳(メタデータ) (2024-04-16T12:27:54Z) - Gender Bias in Large Language Models across Multiple Languages [10.068466432117113]
異なる言語で生成される大言語モデル(LLM)の性別バイアスについて検討する。
1) 性別関連文脈から記述的単語を選択する際の性別バイアス。
2) 性別関連代名詞を選択する際の性別バイアスは, 記述語を付与する。
論文 参考訳(メタデータ) (2024-03-01T04:47:16Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
大規模言語モデル(LLM)はバイアス応答を生成することができる。
条件生成に基づく間接探索フレームワークを提案する。
LLMにおける明示的・暗黙的な性バイアスを明らかにするための3つの戦略を探求する。
論文 参考訳(メタデータ) (2024-02-17T04:48:55Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
本稿では,ジェンダーステレオタイプに関する大規模言語モデルの振る舞いについて考察する。
我々は、WinoBiasとは違って、性別バイアスの存在をテストするための単純なパラダイムを用いています。
a) LLMは、人の性別とステレオタイプ的に一致した職業を選択する確率が3~6倍、(b) これらの選択は、公務員の統計に反映された基礎的真実よりも人々の知覚に適合し、(d) LLMは、我々の研究項目の95%の時間において重要な曖昧さを無視する。
論文 参考訳(メタデータ) (2023-08-28T22:32:05Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。