論文の概要: Effective Image Tampering Localization via Enhanced Transformer and
Co-attention Fusion
- arxiv url: http://arxiv.org/abs/2309.09306v1
- Date: Sun, 17 Sep 2023 15:43:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 16:23:23.414479
- Title: Effective Image Tampering Localization via Enhanced Transformer and
Co-attention Fusion
- Title(参考訳): 改良型変圧器とコアテンション融合による効果的な画像改ざん
- Authors: Kun Guo, Haochen Zhu, Gang Cao
- Abstract要約: 本稿では,2分岐拡張型トランスフォーマーエンコーダを用いた画像改ざんネットワーク(EITLNet)を提案する。
RGBとノイズストリームから抽出した特徴は、座標注意に基づく融合モジュールによって効果的に融合される。
- 参考スコア(独自算出の注目度): 5.691973573807887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Powerful manipulation techniques have made digital image forgeries be easily
created and widespread without leaving visual anomalies. The blind localization
of tampered regions becomes quite significant for image forensics. In this
paper, we propose an effective image tampering localization network (EITLNet)
based on a two-branch enhanced transformer encoder with attention-based feature
fusion. Specifically, a feature enhancement module is designed to enhance the
feature representation ability of the transformer encoder. The features
extracted from RGB and noise streams are fused effectively by the coordinate
attention-based fusion module at multiple scales. Extensive experimental
results verify that the proposed scheme achieves the state-of-the-art
generalization ability and robustness in various benchmark datasets. Code will
be public at https://github.com/multimediaFor/EITLNet.
- Abstract(参考訳): 強力な操作技術により、視覚異常を残さずに、デジタル画像偽造を容易に作成し、広めることができる。
画像鑑定では, 異常領域の視覚的局在が極めて重要である。
本稿では,注意に基づく特徴融合を用いた2分岐エンコーダを用いた画像改ざん型位置決めネットワーク(eitlnet)を提案する。
具体的には、トランスエンコーダの特徴表現能力を向上する機能拡張モジュールを設計する。
rgbおよびノイズストリームから抽出された特徴を複数のスケールで座標注意型融合モジュールにより効果的に融合する。
提案手法が様々なベンチマークデータセットにおける最先端の一般化能力とロバスト性を実現することを検証する。
コードはhttps://github.com/multimediafor/eitlnetで公開される。
関連論文リスト
- UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration [4.068692674719378]
複雑な画像登録は、医用画像解析において重要な課題である。
本稿では,UTSRMorphネットワークと統合トランスフォーマー(UTSRMorph)ネットワークという,教師なしの新たな画像登録手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T06:28:43Z) - WiTUnet: A U-Shaped Architecture Integrating CNN and Transformer for Improved Feature Alignment and Local Information Fusion [16.41082757280262]
低線量CT (LDCT) は, 標準CTと比較して放射線線量が少ないことから, 医用画像診断において選択される技術となっている。
本稿では,従来のスキップ接続ではなく,ネストされた高密度スキップ経路を利用するLDCT画像復号法であるWiTUnetを紹介する。
論文 参考訳(メタデータ) (2024-04-15T07:53:07Z) - Progressive Feedback-Enhanced Transformer for Image Forgery Localization [3.765051882812805]
本稿では,プログレッシブフィードbACkエンハンストランスフォーマー(ProFact)ネットワークを提案する。
実世界の法医学的シナリオに近い大規模な画像サンプルを自動的に生成する効果的な手法を提案する。
提案するローカライザは,画像フォージェリーのローカライゼーション能力とロバスト性において,最先端のローカライザを大きく上回っている。
論文 参考訳(メタデータ) (2023-11-15T12:31:43Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
リモートセンシング画像CDのためのトランスフォーマーベース学習フレームワークTransY-Netを提案する。
グローバルな視点からの特徴抽出を改善し、ピラミッド方式で多段階の視覚的特徴を組み合わせる。
提案手法は,4つの光学式および2つのSAR画像CDベンチマーク上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-22T07:42:19Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
本稿では,CDDFuse(Relationed-Driven Feature Decomposition Fusion)ネットワークを提案する。
近赤外可視画像融合や医用画像融合など,複数の融合タスクにおいてCDDFuseが有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-11-26T02:40:28Z) - Multimodal Image Fusion based on Hybrid CNN-Transformer and Non-local
Cross-modal Attention [12.167049432063132]
本稿では,畳み込みエンコーダとトランスフォーマーベースのデコーダを組み合わせたハイブリッドモデルを提案する。
分岐融合モジュールは、2つの枝の特徴を適応的に融合させるように設計されている。
論文 参考訳(メタデータ) (2022-10-18T13:30:52Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
画像復元のためのアテンション・リトラクタブル・トランス (ART) を提案する。
ARTはネットワーク内の密集モジュールと疎開モジュールの両方を提示する。
画像超解像、デノナイジング、JPEG圧縮アーティファクト削減タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-04T07:35:01Z) - Image Fusion Transformer [75.71025138448287]
画像融合では、異なるセンサから得られた画像を融合して、情報強化された単一の画像を生成する。
近年,画像融合のための有意義な特徴を符号化するために,最先端の手法で畳み込みニューラルネットワーク(CNN)が採用されている。
我々は,画像融合変換器 (IFT) を提案する。
論文 参考訳(メタデータ) (2021-07-19T16:42:49Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。